On uniformly Gâteaux smooth $C^{(n)}$-smooth norms on separable Banach spaces
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 3, pp. 657-672
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Every separable Banach space with $C^{(n)}$-smooth norm (Lipschitz bump function) admits an equivalent norm (a Lipschitz bump function) which is both uniformly Gâteaux smooth and $C^{(n)}$-smooth. If a Banach space admits a uniformly Gâteaux smooth bump function, then it admits an equivalent uniformly Gâteaux smooth norm.
@article{CMJ_1999__49_3_a15,
author = {Fabian, Mari\'an and Zizler, V\'aclav},
title = {On uniformly {G\^ateaux} smooth $C^{(n)}$-smooth norms on separable {Banach} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {657--672},
publisher = {mathdoc},
volume = {49},
number = {3},
year = {1999},
mrnumber = {1708330},
zbl = {1011.46010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1999__49_3_a15/}
}
TY - JOUR
AU - Fabian, Marián
AU - Zizler, Václav
TI - On uniformly Gâteaux smooth $C^{(n)}$-smooth norms on separable Banach spaces
JO - Czechoslovak Mathematical Journal
PY - 1999
SP - 657
EP - 672
VL - 49
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/CMJ_1999__49_3_a15/
LA - en
ID - CMJ_1999__49_3_a15
ER -
Fabian, Marián; Zizler, Václav. On uniformly Gâteaux smooth $C^{(n)}$-smooth norms on separable Banach spaces. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 3, pp. 657-672. http://geodesic.mathdoc.fr/item/CMJ_1999__49_3_a15/