Some decidable congruences of free monoids
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 3, pp. 475-480
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $W$ be the free monoid over a finite alphabet $A$. We prove that a congruence of $W$ generated by a finite number of pairs $\langle au,u\rangle $, where $a\in A$ and $u\in W$, is always decidable.
@article{CMJ_1999__49_3_a1,
author = {Je\v{z}ek, Jaroslav},
title = {Some decidable congruences of free monoids},
journal = {Czechoslovak Mathematical Journal},
pages = {475--480},
publisher = {mathdoc},
volume = {49},
number = {3},
year = {1999},
mrnumber = {1707983},
zbl = {1008.20049},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1999__49_3_a1/}
}
Ježek, Jaroslav. Some decidable congruences of free monoids. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 3, pp. 475-480. http://geodesic.mathdoc.fr/item/CMJ_1999__49_3_a1/