Two-fold theorem on Fréchetness of products
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 2, pp. 421-429
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A refined common generalization of known theorems (Arhangel’skii, Michael, Popov and Rančin) on the Fréchetness of products is proved. A new characterization, in terms of products, of strongly Fréchet topologies is provided.
Classification :
54A20, 54B10, 54D50, 54D55, 54G15
Keywords: $\alpha_3$; $\alpha_4$; $\beta_3$; $\beta_4$ spaces; $\Phi$-space; product space; sequential space; sequentially subtransverse; strongly Fréchet; transverse
Keywords: $\alpha_3$; $\alpha_4$; $\beta_3$; $\beta_4$ spaces; $\Phi$-space; product space; sequential space; sequentially subtransverse; strongly Fréchet; transverse
@article{CMJ_1999__49_2_a16,
author = {Dolecki, S. and Nogura, T.},
title = {Two-fold theorem on {Fr\'echetness} of products},
journal = {Czechoslovak Mathematical Journal},
pages = {421--429},
publisher = {mathdoc},
volume = {49},
number = {2},
year = {1999},
mrnumber = {1692508},
zbl = {0949.54010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1999__49_2_a16/}
}
Dolecki, S.; Nogura, T. Two-fold theorem on Fréchetness of products. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 2, pp. 421-429. http://geodesic.mathdoc.fr/item/CMJ_1999__49_2_a16/