$L^p$-discrepancy and statistical independence of sequences
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 97-110
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We characterize statistical independence of sequences by the $L^p$-discrepancy and the Wiener $L^p$-discrepancy. Furthermore, we find asymptotic information on the distribution of the $L^2$-discrepancy of sequences.
Classification :
11K06, 11K31, 11K38
Keywords: sequences; statistical independence; discrepancy; distribution functions
Keywords: sequences; statistical independence; discrepancy; distribution functions
@article{CMJ_1999__49_1_a9,
author = {Grabner, Peter J. and Strauch, Oto and Tichy, Robert F.},
title = {$L^p$-discrepancy and statistical independence of sequences},
journal = {Czechoslovak Mathematical Journal},
pages = {97--110},
publisher = {mathdoc},
volume = {49},
number = {1},
year = {1999},
mrnumber = {1676837},
zbl = {1074.11509},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1999__49_1_a9/}
}
TY - JOUR AU - Grabner, Peter J. AU - Strauch, Oto AU - Tichy, Robert F. TI - $L^p$-discrepancy and statistical independence of sequences JO - Czechoslovak Mathematical Journal PY - 1999 SP - 97 EP - 110 VL - 49 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_1999__49_1_a9/ LA - en ID - CMJ_1999__49_1_a9 ER -
Grabner, Peter J.; Strauch, Oto; Tichy, Robert F. $L^p$-discrepancy and statistical independence of sequences. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 97-110. http://geodesic.mathdoc.fr/item/CMJ_1999__49_1_a9/