$L^p$-discrepancy and statistical independence of sequences
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 97-110.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We characterize statistical independence of sequences by the $L^p$-discrepancy and the Wiener $L^p$-discrepancy. Furthermore, we find asymptotic information on the distribution of the $L^2$-discrepancy of sequences.
Classification : 11K06, 11K31, 11K38
Keywords: sequences; statistical independence; discrepancy; distribution functions
@article{CMJ_1999__49_1_a9,
     author = {Grabner, Peter J. and Strauch, Oto and Tichy, Robert F.},
     title = {$L^p$-discrepancy and statistical independence of sequences},
     journal = {Czechoslovak Mathematical Journal},
     pages = {97--110},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {1999},
     mrnumber = {1676837},
     zbl = {1074.11509},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999__49_1_a9/}
}
TY  - JOUR
AU  - Grabner, Peter J.
AU  - Strauch, Oto
AU  - Tichy, Robert F.
TI  - $L^p$-discrepancy and statistical independence of sequences
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 97
EP  - 110
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999__49_1_a9/
LA  - en
ID  - CMJ_1999__49_1_a9
ER  - 
%0 Journal Article
%A Grabner, Peter J.
%A Strauch, Oto
%A Tichy, Robert F.
%T $L^p$-discrepancy and statistical independence of sequences
%J Czechoslovak Mathematical Journal
%D 1999
%P 97-110
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_1999__49_1_a9/
%G en
%F CMJ_1999__49_1_a9
Grabner, Peter J.; Strauch, Oto; Tichy, Robert F. $L^p$-discrepancy and statistical independence of sequences. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 97-110. http://geodesic.mathdoc.fr/item/CMJ_1999__49_1_a9/