On an extension of Fekete’s lemma
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 63-66
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We show that if a real $n \times n$ non-singular matrix ($n \ge m$) has all its minors of order $m-1$ non-negative and has all its minors of order $m$ which come from consecutive rows non-negative, then all $m$th order minors are non-negative, which may be considered an extension of Fekete’s lemma.
@article{CMJ_1999__49_1_a6,
author = {Chon, Inheung},
title = {On an extension of {Fekete{\textquoteright}s} lemma},
journal = {Czechoslovak Mathematical Journal},
pages = {63--66},
publisher = {mathdoc},
volume = {49},
number = {1},
year = {1999},
mrnumber = {1676845},
zbl = {0954.15005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1999__49_1_a6/}
}
Chon, Inheung. On an extension of Fekete’s lemma. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 63-66. http://geodesic.mathdoc.fr/item/CMJ_1999__49_1_a6/