On an extension of Fekete’s lemma
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 63-66.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show that if a real $n \times n$ non-singular matrix ($n \ge m$) has all its minors of order $m-1$ non-negative and has all its minors of order $m$ which come from consecutive rows non-negative, then all $m$th order minors are non-negative, which may be considered an extension of Fekete’s lemma.
Classification : 15A15
@article{CMJ_1999__49_1_a6,
     author = {Chon, Inheung},
     title = {On an extension of {Fekete{\textquoteright}s} lemma},
     journal = {Czechoslovak Mathematical Journal},
     pages = {63--66},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {1999},
     mrnumber = {1676845},
     zbl = {0954.15005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999__49_1_a6/}
}
TY  - JOUR
AU  - Chon, Inheung
TI  - On an extension of Fekete’s lemma
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 63
EP  - 66
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999__49_1_a6/
LA  - en
ID  - CMJ_1999__49_1_a6
ER  - 
%0 Journal Article
%A Chon, Inheung
%T On an extension of Fekete’s lemma
%J Czechoslovak Mathematical Journal
%D 1999
%P 63-66
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_1999__49_1_a6/
%G en
%F CMJ_1999__49_1_a6
Chon, Inheung. On an extension of Fekete’s lemma. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 63-66. http://geodesic.mathdoc.fr/item/CMJ_1999__49_1_a6/