Oscillations of certain functional differential equations
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 45-52
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Sufficient conditions are presented for all bounded solutions of the linear system of delay differential equations \[ (-1)^{m+1}\frac{d^my_i(t)}{dt^m} + \sum ^n_{j=1} q_{ij} y_j(t-h_{jj})=0, \quad m \ge 1, \ i=1,2,\ldots ,n, \] to be oscillatory, where $q_{ij} \varepsilon (-\infty ,\infty )$, $h_{jj} \in (0,\infty )$, $i,j = 1,2,\ldots ,n$. Also, we study the oscillatory behavior of all bounded solutions of the linear system of neutral differential equations \[ (-1)^{m+1} \frac{d^m}{dt^m} (y_i(t)+cy_i(t-g)) + \sum ^n_{j=1} q_{ij} y_j (t-h)=0, \] where $c$, $g$ and $h$ are real constants and $i=1,2,\ldots ,n$.
@article{CMJ_1999__49_1_a4,
author = {Grace, S. R.},
title = {Oscillations of certain functional differential equations},
journal = {Czechoslovak Mathematical Journal},
pages = {45--52},
publisher = {mathdoc},
volume = {49},
number = {1},
year = {1999},
mrnumber = {1676690},
zbl = {0955.34051},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1999__49_1_a4/}
}
Grace, S. R. Oscillations of certain functional differential equations. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 45-52. http://geodesic.mathdoc.fr/item/CMJ_1999__49_1_a4/