Sequential completeness of subspaces of products of two cardinals
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 119-125.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\kappa $ be a cardinal number with the usual order topology. We prove that all subspaces of $\kappa ^2$ are weakly sequentially complete and, as a corollary, all subspaces of $\omega _1^2$ are sequentially complete. Moreover we show that a subspace of $(\omega _1+1)^2$ need not be sequentially complete, but note that $X=A\times B$ is sequentially complete whenever $A$ and $B$ are subspaces of $\kappa $.
Classification : 54A20, 54B10, 54C08
Keywords: sequentially continuous; sequentially complete; product space
@article{CMJ_1999__49_1_a11,
     author = {Fri\v{c}, Roman and Kemoto, Nobuyuki},
     title = {Sequential completeness of subspaces of products of two cardinals},
     journal = {Czechoslovak Mathematical Journal},
     pages = {119--125},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {1999},
     mrnumber = {1676829},
     zbl = {0949.54004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999__49_1_a11/}
}
TY  - JOUR
AU  - Frič, Roman
AU  - Kemoto, Nobuyuki
TI  - Sequential completeness of subspaces of products of two cardinals
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 119
EP  - 125
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999__49_1_a11/
LA  - en
ID  - CMJ_1999__49_1_a11
ER  - 
%0 Journal Article
%A Frič, Roman
%A Kemoto, Nobuyuki
%T Sequential completeness of subspaces of products of two cardinals
%J Czechoslovak Mathematical Journal
%D 1999
%P 119-125
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_1999__49_1_a11/
%G en
%F CMJ_1999__49_1_a11
Frič, Roman; Kemoto, Nobuyuki. Sequential completeness of subspaces of products of two cardinals. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 119-125. http://geodesic.mathdoc.fr/item/CMJ_1999__49_1_a11/