Rings of maps: sequential convergence and completion
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 111-118.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The ring $B(R)$ of all real-valued measurable functions, carrying the pointwise convergence, is a sequential ring completion of the subring $C(R)$ of all continuous functions and, similarly, the ring $\mathbb{B}$ of all Borel measurable subsets of $R$ is a sequential ring completion of the subring $\mathbb{B}_0$ of all finite unions of half-open intervals; the two completions are not categorical. We study $\mathcal L_0^*$-rings of maps and develop a completion theory covering the two examples. In particular, the $\sigma $-fields of sets form an epireflective subcategory of the category of fields of sets and, for each field of sets $\mathbb{A}$, the generated $\sigma $-field $\sigma (\mathbb{A})$ yields its epireflection. Via zero-rings the theory can be applied to completions of special commutative $\mathcal L_0^*$-groups.
Classification : 54A20, 54B30, 54H13, 60A99
Keywords: Rings of sets; completion of sequential convergence rings; $Z(2)$-generation; $Z(2)$-completion; $\sigma $-rings of maps; epireflection; fields of events; foundation of probability
@article{CMJ_1999__49_1_a10,
     author = {Fri\v{c}, Roman},
     title = {Rings of maps: sequential convergence and completion},
     journal = {Czechoslovak Mathematical Journal},
     pages = {111--118},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {1999},
     mrnumber = {1676833},
     zbl = {0949.54003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999__49_1_a10/}
}
TY  - JOUR
AU  - Frič, Roman
TI  - Rings of maps: sequential convergence and completion
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 111
EP  - 118
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999__49_1_a10/
LA  - en
ID  - CMJ_1999__49_1_a10
ER  - 
%0 Journal Article
%A Frič, Roman
%T Rings of maps: sequential convergence and completion
%J Czechoslovak Mathematical Journal
%D 1999
%P 111-118
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_1999__49_1_a10/
%G en
%F CMJ_1999__49_1_a10
Frič, Roman. Rings of maps: sequential convergence and completion. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 111-118. http://geodesic.mathdoc.fr/item/CMJ_1999__49_1_a10/