Convergence estimate for second order Cauchy problems with a small parameter
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 737-745
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider the second order initial value problem in a Hilbert space, which is a singular perturbation of a first order initial value problem. The difference of the solution and its singular limit is estimated in terms of the small parameter $\varepsilon .$ The coefficients are commuting self-adjoint operators and the estimates hold also for the semilinear problem.
@article{CMJ_1998__48_4_a10,
author = {Najman, Branko},
title = {Convergence estimate for second order {Cauchy} problems with a small parameter},
journal = {Czechoslovak Mathematical Journal},
pages = {737--745},
publisher = {mathdoc},
volume = {48},
number = {4},
year = {1998},
mrnumber = {1658257},
zbl = {0952.35151},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1998__48_4_a10/}
}
TY - JOUR AU - Najman, Branko TI - Convergence estimate for second order Cauchy problems with a small parameter JO - Czechoslovak Mathematical Journal PY - 1998 SP - 737 EP - 745 VL - 48 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_1998__48_4_a10/ LA - en ID - CMJ_1998__48_4_a10 ER -
Najman, Branko. Convergence estimate for second order Cauchy problems with a small parameter. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 737-745. http://geodesic.mathdoc.fr/item/CMJ_1998__48_4_a10/