Best simultaneous $L_p$ approximations
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 3, pp. 457-463
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we study simultaneous approximation of $n$ real-valued functions in $L_{p}[ {a,b}]$ and give a generalization of some related results.
Classification :
26A21, 28A05, 41A28, 41A50, 41A65, 54E35, 54H05
Keywords: quasi-metric; continuous map; Borel map; $\sigma $-discrete map; $\sigma $-discretely decomposable family; absolutely Borel set; absolutely analytic space
Keywords: quasi-metric; continuous map; Borel map; $\sigma $-discrete map; $\sigma $-discretely decomposable family; absolutely Borel set; absolutely analytic space
@article{CMJ_1998__48_3_a6,
author = {Karaku\c{s}, Yusuf},
title = {Best simultaneous $L_p$ approximations},
journal = {Czechoslovak Mathematical Journal},
pages = {457--463},
publisher = {mathdoc},
volume = {48},
number = {3},
year = {1998},
mrnumber = {1637922},
zbl = {0957.41011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1998__48_3_a6/}
}
Karakuş, Yusuf. Best simultaneous $L_p$ approximations. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 3, pp. 457-463. http://geodesic.mathdoc.fr/item/CMJ_1998__48_3_a6/