On the extension of $D$-poset valued measures
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 3, pp. 385-394
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A variant of Alexandrov theorem is proved stating that a compact, subadditive $D$-poset valued mapping is continuous. Then the measure extension theorem is proved for MV-algebra valued measures.
Classification :
28B15, 28E10
Keywords: $D$-posets; extension of measures; observables in quantum mechanics
Keywords: $D$-posets; extension of measures; observables in quantum mechanics
@article{CMJ_1998__48_3_a0,
author = {Rie\v{c}an, Beloslav},
title = {On the extension of $D$-poset valued measures},
journal = {Czechoslovak Mathematical Journal},
pages = {385--394},
publisher = {mathdoc},
volume = {48},
number = {3},
year = {1998},
mrnumber = {1637914},
zbl = {0953.28015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1998__48_3_a0/}
}
Riečan, Beloslav. On the extension of $D$-poset valued measures. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 3, pp. 385-394. http://geodesic.mathdoc.fr/item/CMJ_1998__48_3_a0/