The maximum genus, matchings and the cycle space of a graph
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 2, pp. 329-339
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we determine the maximum genus of a graph by using the matching number of the intersection graph of a basis of its cycle space. Our result is a common generalization of a theorem of Glukhov and a theorem of Nebeský .
@article{CMJ_1998__48_2_a9,
author = {Fu, Hung-Lin and \v{S}koviera, Martin and Tsai, Ming-Chun},
title = {The maximum genus, matchings and the cycle space of a graph},
journal = {Czechoslovak Mathematical Journal},
pages = {329--339},
publisher = {mathdoc},
volume = {48},
number = {2},
year = {1998},
mrnumber = {1624256},
zbl = {0949.05015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1998__48_2_a9/}
}
TY - JOUR AU - Fu, Hung-Lin AU - Škoviera, Martin AU - Tsai, Ming-Chun TI - The maximum genus, matchings and the cycle space of a graph JO - Czechoslovak Mathematical Journal PY - 1998 SP - 329 EP - 339 VL - 48 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_1998__48_2_a9/ LA - en ID - CMJ_1998__48_2_a9 ER -
Fu, Hung-Lin; Škoviera, Martin; Tsai, Ming-Chun. The maximum genus, matchings and the cycle space of a graph. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 2, pp. 329-339. http://geodesic.mathdoc.fr/item/CMJ_1998__48_2_a9/