Singular Dirichlet boundary value problems. II: Resonance case
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 2, pp. 269-289
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Existence results are established for the resonant problem $y^{\prime \prime }+\lambda _m \,a\,y=f(t,y)$ a.e. on $[0,1]$ with $y$ satisfying Dirichlet boundary conditions. The problem is singular since $f$ is a Carathéodory function, $a\in L_{{\mathrm loc}}^1(0,1)$ with $a>0$ a.e. on $[0,1]$ and $\int ^1_0 x(1-x)a(x)\,\mathrm{d}x \infty $.
@article{CMJ_1998__48_2_a5,
author = {O'Regan, Donal},
title = {Singular {Dirichlet} boundary value problems. {II:} {Resonance} case},
journal = {Czechoslovak Mathematical Journal},
pages = {269--289},
publisher = {mathdoc},
volume = {48},
number = {2},
year = {1998},
mrnumber = {1624319},
zbl = {0957.34016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1998__48_2_a5/}
}
O'Regan, Donal. Singular Dirichlet boundary value problems. II: Resonance case. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 2, pp. 269-289. http://geodesic.mathdoc.fr/item/CMJ_1998__48_2_a5/