Homomorphisms between $A$-projective Abelian groups and left Kasch-rings
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 1, pp. 31-43
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Glaz and Wickless introduced the class $G$ of mixed abelian groups $A$ which have finite torsion-free rank and satisfy the following three properties: i) $A_p$ is finite for all primes $p$, ii) $A$ is isomorphic to a pure subgroup of $\Pi _p A_p$, and iii) $\mathop {\mathrm Hom}\nolimits (A,tA)$ is torsion. A ring $R$ is a left Kasch ring if every proper right ideal of $R$ has a non-zero left annihilator. We characterize the elements $A$ of $G$ such that $E(A)/tE(A)$ is a left Kasch ring, and discuss related results.
Classification :
20K20, 20K21, 20K25, 20K30
Keywords: mixed Abelian group; endomorphism ring; Kasch ring; $A$-solvable group
Keywords: mixed Abelian group; endomorphism ring; Kasch ring; $A$-solvable group
@article{CMJ_1998__48_1_a2,
author = {Albrecht, Ulrich and Jeong, Jong-Woo},
title = {Homomorphisms between $A$-projective {Abelian} groups and left {Kasch-rings}},
journal = {Czechoslovak Mathematical Journal},
pages = {31--43},
publisher = {mathdoc},
volume = {48},
number = {1},
year = {1998},
mrnumber = {1614064},
zbl = {0931.20043},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1998__48_1_a2/}
}
TY - JOUR AU - Albrecht, Ulrich AU - Jeong, Jong-Woo TI - Homomorphisms between $A$-projective Abelian groups and left Kasch-rings JO - Czechoslovak Mathematical Journal PY - 1998 SP - 31 EP - 43 VL - 48 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_1998__48_1_a2/ LA - en ID - CMJ_1998__48_1_a2 ER -
Albrecht, Ulrich; Jeong, Jong-Woo. Homomorphisms between $A$-projective Abelian groups and left Kasch-rings. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 1, pp. 31-43. http://geodesic.mathdoc.fr/item/CMJ_1998__48_1_a2/