New edge neighborhood graphs
Czechoslovak Mathematical Journal, Tome 47 (1997) no. 3, pp. 501-504.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $G$ be an undirected simple connected graph, and $e=uv$ be an edge of $G$. Let $N_G(e)$ be the subgraph of $G$ induced by the set of all vertices of $G$ which are not incident to $e$ but are adjacent to $u$ or $v$. Let $\mathcal N_e$ be the class of all graphs $H$ such that, for some graph $G$, $N_G(e)\cong H$ for every edge $e$ of $G$. Zelinka [3] studied edge neighborhood graphs and obtained some special graphs in $\mathcal N_e$. Balasubramanian and Alsardary [1] obtained some other graphs in $\mathcal N_e$. In this paper we given some new graphs in $\mathcal N_e$.
Classification : 05C75
@article{CMJ_1997__47_3_a9,
     author = {Ali, Ali A. and Alsardary, Salar Y.},
     title = {New edge neighborhood graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {501--504},
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {1997},
     mrnumber = {1461428},
     zbl = {0898.05066},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1997__47_3_a9/}
}
TY  - JOUR
AU  - Ali, Ali A.
AU  - Alsardary, Salar Y.
TI  - New edge neighborhood graphs
JO  - Czechoslovak Mathematical Journal
PY  - 1997
SP  - 501
EP  - 504
VL  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_1997__47_3_a9/
LA  - en
ID  - CMJ_1997__47_3_a9
ER  - 
%0 Journal Article
%A Ali, Ali A.
%A Alsardary, Salar Y.
%T New edge neighborhood graphs
%J Czechoslovak Mathematical Journal
%D 1997
%P 501-504
%V 47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_1997__47_3_a9/
%G en
%F CMJ_1997__47_3_a9
Ali, Ali A.; Alsardary, Salar Y. New edge neighborhood graphs. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 3, pp. 501-504. http://geodesic.mathdoc.fr/item/CMJ_1997__47_3_a9/