The conductor of a cyclic quartic field using Gauss sums
Czechoslovak Mathematical Journal, Tome 47 (1997) no. 3, pp. 453-462.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $Q$ denote the field of rational numbers. Let $K$ be a cyclic quartic extension of $Q$. It is known that there are unique integers $A$, $B$, $C$, $D$ such that \[ K=Q\Big (\sqrt{A(D+B\sqrt{D})}\Big ), \] where \[ A \ \text{is squarefree and odd}, D=B^2+C^2 \ \text{is squarefree}, \ B>0, \ C>0, GCD(A,D) = 1. \] The conductor $f(K)$ of $K$ is $f(K) = 2^l|A|D$, where \[ l= \begin{cases} 3, \quad \text{if} \ D\equiv 2 \pmod 4 \ \text{or} \ D \equiv 1 \pmod 4, \ B \equiv 1 \pmod 2, \\ 2, \quad \text{if} \ D\equiv 1 \pmod 4, \ B \equiv 0 \pmod 2, \ A + B \equiv 3 \pmod 4, \\ 0, \quad \text{if} \ D\equiv 1 \pmod 4, \ B \equiv 0 \pmod 2, \ A + B \equiv 1 \pmod 4. \end{cases} \] A simple proof of this formula for $f(K)$ is given, which uses the basic properties of quartic Gauss sums.
Classification : 11L05, 11R16
@article{CMJ_1997__47_3_a5,
     author = {Spearman, Blair K. and Williams, Kenneth S.},
     title = {The conductor of a cyclic quartic field using {Gauss} sums},
     journal = {Czechoslovak Mathematical Journal},
     pages = {453--462},
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {1997},
     mrnumber = {1461424},
     zbl = {0898.11041},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1997__47_3_a5/}
}
TY  - JOUR
AU  - Spearman, Blair K.
AU  - Williams, Kenneth S.
TI  - The conductor of a cyclic quartic field using Gauss sums
JO  - Czechoslovak Mathematical Journal
PY  - 1997
SP  - 453
EP  - 462
VL  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_1997__47_3_a5/
LA  - en
ID  - CMJ_1997__47_3_a5
ER  - 
%0 Journal Article
%A Spearman, Blair K.
%A Williams, Kenneth S.
%T The conductor of a cyclic quartic field using Gauss sums
%J Czechoslovak Mathematical Journal
%D 1997
%P 453-462
%V 47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_1997__47_3_a5/
%G en
%F CMJ_1997__47_3_a5
Spearman, Blair K.; Williams, Kenneth S. The conductor of a cyclic quartic field using Gauss sums. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 3, pp. 453-462. http://geodesic.mathdoc.fr/item/CMJ_1997__47_3_a5/