The conductor of a cyclic quartic field using Gauss sums
Czechoslovak Mathematical Journal, Tome 47 (1997) no. 3, pp. 453-462
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $Q$ denote the field of rational numbers. Let $K$ be a cyclic quartic extension of $Q$. It is known that there are unique integers $A$, $B$, $C$, $D$ such that \[ K=Q\Big (\sqrt{A(D+B\sqrt{D})}\Big ), \] where \[ A \ \text{is squarefree and odd}, D=B^2+C^2 \ \text{is squarefree}, \ B>0, \ C>0, GCD(A,D) = 1. \] The conductor $f(K)$ of $K$ is $f(K) = 2^l|A|D$, where \[ l= \begin{cases} 3, \quad \text{if} \ D\equiv 2 \pmod 4 \ \text{or} \ D \equiv 1 \pmod 4, \ B \equiv 1 \pmod 2, \\ 2, \quad \text{if} \ D\equiv 1 \pmod 4, \ B \equiv 0 \pmod 2, \ A + B \equiv 3 \pmod 4, \\ 0, \quad \text{if} \ D\equiv 1 \pmod 4, \ B \equiv 0 \pmod 2, \ A + B \equiv 1 \pmod 4. \end{cases} \] A simple proof of this formula for $f(K)$ is given, which uses the basic properties of quartic Gauss sums.
@article{CMJ_1997__47_3_a5,
author = {Spearman, Blair K. and Williams, Kenneth S.},
title = {The conductor of a cyclic quartic field using {Gauss} sums},
journal = {Czechoslovak Mathematical Journal},
pages = {453--462},
publisher = {mathdoc},
volume = {47},
number = {3},
year = {1997},
mrnumber = {1461424},
zbl = {0898.11041},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1997__47_3_a5/}
}
TY - JOUR AU - Spearman, Blair K. AU - Williams, Kenneth S. TI - The conductor of a cyclic quartic field using Gauss sums JO - Czechoslovak Mathematical Journal PY - 1997 SP - 453 EP - 462 VL - 47 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_1997__47_3_a5/ LA - en ID - CMJ_1997__47_3_a5 ER -
Spearman, Blair K.; Williams, Kenneth S. The conductor of a cyclic quartic field using Gauss sums. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 3, pp. 453-462. http://geodesic.mathdoc.fr/item/CMJ_1997__47_3_a5/