Topological properties of the solution set of a class of nonlinear evolutions inclusions
Czechoslovak Mathematical Journal, Tome 47 (1997) no. 3, pp. 409-424
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In the paper we study the topological structure of the solution set of a class of nonlinear evolution inclusions. First we show that it is nonempty and compact in certain function spaces and that it depends in an upper semicontinuous way on the initial condition. Then by strengthening the hypothesis on the orientor field $F(t,x)$, we are able to show that the solution set is in fact an $R_\delta $-set. Finally some applications to infinite dimensional control systems are also presented.
Classification :
34G20, 34H05, 35B30, 35B37, 35R45, 49A20, 49J24
Keywords: $R_\delta $-set; homotopic; contractible; evolution triple; evolution inclusion; compact embedding; optimal control
Keywords: $R_\delta $-set; homotopic; contractible; evolution triple; evolution inclusion; compact embedding; optimal control
@article{CMJ_1997__47_3_a2,
author = {Papageorgiou, Nikolaos S.},
title = {Topological properties of the solution set of a class of nonlinear evolutions inclusions},
journal = {Czechoslovak Mathematical Journal},
pages = {409--424},
publisher = {mathdoc},
volume = {47},
number = {3},
year = {1997},
mrnumber = {1461421},
zbl = {0898.35011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1997__47_3_a2/}
}
TY - JOUR AU - Papageorgiou, Nikolaos S. TI - Topological properties of the solution set of a class of nonlinear evolutions inclusions JO - Czechoslovak Mathematical Journal PY - 1997 SP - 409 EP - 424 VL - 47 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_1997__47_3_a2/ LA - en ID - CMJ_1997__47_3_a2 ER -
Papageorgiou, Nikolaos S. Topological properties of the solution set of a class of nonlinear evolutions inclusions. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 3, pp. 409-424. http://geodesic.mathdoc.fr/item/CMJ_1997__47_3_a2/