On strong digraphs with a prescribed ultracenter
Czechoslovak Mathematical Journal, Tome 47 (1997) no. 1, pp. 83-94.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The (directed) distance from a vertex $u$ to a vertex $v$ in a strong digraph $D$ is the length of a shortest $u$-$v$ (directed) path in $D$. The eccentricity of a vertex $v$ of $D$ is the distance from $v$ to a vertex furthest from $v$ in $D$. The radius rad$D$ is the minimum eccentricity among the vertices of $D$ and the diameter diam$D$ is the maximum eccentricity. A central vertex is a vertex with eccentricity $\mathop {\mathrm rad}\nolimits D$ and the subdigraph induced by the central vertices is the center $C(D)$. For a central vertex $v$ in a strong digraph $D$ with $\mathop {\mathrm rad}\nolimits D\text{diam} D$, the central distance $c(v)$ of $v$ is the greatest nonnegative integer $n$ such that whenever $d(v,x)\le n$, then $x$ is in $C(D)$. The maximum central distance among the central vertices of $D$ is the ultraradius urad$D$ and the subdigraph induced by the central vertices with central distance urad$D$ is the ultracenter $UC(D)$. For a given digraph $D$, the problem of determining a strong digraph $H$ with $UC(H)=D$ and $C(H)\ne D$ is studied. This problem is also considered for digraphs that are asymmetric.
Classification : 05C12, 05C20
@article{CMJ_1997__47_1_a5,
     author = {Chartrand, Gary and Gavlas, Heather and Schulz, Kelly and Winters, Steve J.},
     title = {On strong digraphs with a prescribed ultracenter},
     journal = {Czechoslovak Mathematical Journal},
     pages = {83--94},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {1997},
     mrnumber = {1435607},
     zbl = {0897.05033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1997__47_1_a5/}
}
TY  - JOUR
AU  - Chartrand, Gary
AU  - Gavlas, Heather
AU  - Schulz, Kelly
AU  - Winters, Steve J.
TI  - On strong digraphs with a prescribed ultracenter
JO  - Czechoslovak Mathematical Journal
PY  - 1997
SP  - 83
EP  - 94
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_1997__47_1_a5/
LA  - en
ID  - CMJ_1997__47_1_a5
ER  - 
%0 Journal Article
%A Chartrand, Gary
%A Gavlas, Heather
%A Schulz, Kelly
%A Winters, Steve J.
%T On strong digraphs with a prescribed ultracenter
%J Czechoslovak Mathematical Journal
%D 1997
%P 83-94
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_1997__47_1_a5/
%G en
%F CMJ_1997__47_1_a5
Chartrand, Gary; Gavlas, Heather; Schulz, Kelly; Winters, Steve J. On strong digraphs with a prescribed ultracenter. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 1, pp. 83-94. http://geodesic.mathdoc.fr/item/CMJ_1997__47_1_a5/