Congruences and ideals in ternary rings
Czechoslovak Mathematical Journal, Tome 47 (1997) no. 1, pp. 163-172
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A ternary ring is an algebraic structure ${\mathcal R}=(R;t,0,1)$ of type $(3,0,0)$ satisfying the identities $t(0,x,y)=y=t(x,0,y)$ and $t(1,x,0)=x=(x,1,0)$ where, moreover, for any $a$, $b$, $c\in R$ there exists a unique $d\in R$ with $t(a,b,d)=c$. A congruence $\theta $ on ${\mathcal R}$ is called normal if ${\mathcal R}/\theta $ is a ternary ring again. We describe basic properties of the lattice of all normal congruences on ${\mathcal R}$ and establish connections between ideals (introduced earlier by the third author) and congruence kernels.
Classification :
08A05, 08A30, 13A15, 17A40, 20N10
Keywords: ternary ring; ideal; congruence; normal congruence; congruence kernel
Keywords: ternary ring; ideal; congruence; normal congruence; congruence kernel
@article{CMJ_1997__47_1_a12,
author = {Chajda, Ivan and Hala\v{s}, Radom{\'\i}r and Machala, Franti\v{s}ek},
title = {Congruences and ideals in ternary rings},
journal = {Czechoslovak Mathematical Journal},
pages = {163--172},
publisher = {mathdoc},
volume = {47},
number = {1},
year = {1997},
mrnumber = {1435614},
zbl = {0934.17001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1997__47_1_a12/}
}
TY - JOUR AU - Chajda, Ivan AU - Halaš, Radomír AU - Machala, František TI - Congruences and ideals in ternary rings JO - Czechoslovak Mathematical Journal PY - 1997 SP - 163 EP - 172 VL - 47 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_1997__47_1_a12/ LA - en ID - CMJ_1997__47_1_a12 ER -
Chajda, Ivan; Halaš, Radomír; Machala, František. Congruences and ideals in ternary rings. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 1, pp. 163-172. http://geodesic.mathdoc.fr/item/CMJ_1997__47_1_a12/