Congruences and ideals in ternary rings
Czechoslovak Mathematical Journal, Tome 47 (1997) no. 1, pp. 163-172.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A ternary ring is an algebraic structure ${\mathcal R}=(R;t,0,1)$ of type $(3,0,0)$ satisfying the identities $t(0,x,y)=y=t(x,0,y)$ and $t(1,x,0)=x=(x,1,0)$ where, moreover, for any $a$, $b$, $c\in R$ there exists a unique $d\in R$ with $t(a,b,d)=c$. A congruence $\theta $ on ${\mathcal R}$ is called normal if ${\mathcal R}/\theta $ is a ternary ring again. We describe basic properties of the lattice of all normal congruences on ${\mathcal R}$ and establish connections between ideals (introduced earlier by the third author) and congruence kernels.
Classification : 08A05, 08A30, 13A15, 17A40, 20N10
Keywords: ternary ring; ideal; congruence; normal congruence; congruence kernel
@article{CMJ_1997__47_1_a12,
     author = {Chajda, Ivan and Hala\v{s}, Radom{\'\i}r and Machala, Franti\v{s}ek},
     title = {Congruences and ideals in ternary rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {163--172},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {1997},
     mrnumber = {1435614},
     zbl = {0934.17001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1997__47_1_a12/}
}
TY  - JOUR
AU  - Chajda, Ivan
AU  - Halaš, Radomír
AU  - Machala, František
TI  - Congruences and ideals in ternary rings
JO  - Czechoslovak Mathematical Journal
PY  - 1997
SP  - 163
EP  - 172
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_1997__47_1_a12/
LA  - en
ID  - CMJ_1997__47_1_a12
ER  - 
%0 Journal Article
%A Chajda, Ivan
%A Halaš, Radomír
%A Machala, František
%T Congruences and ideals in ternary rings
%J Czechoslovak Mathematical Journal
%D 1997
%P 163-172
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_1997__47_1_a12/
%G en
%F CMJ_1997__47_1_a12
Chajda, Ivan; Halaš, Radomír; Machala, František. Congruences and ideals in ternary rings. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 1, pp. 163-172. http://geodesic.mathdoc.fr/item/CMJ_1997__47_1_a12/