Construction of equations of dynamics of a given structure based on equations of program constraints
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 70 (2024) no. 3, pp. 428-440.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of constructing a system of differential equations from a given set of constraint equations and reducing them to the form of Lagrange equations with dissipative forces that ensure stabilization of the constraints. We determine the dissipative function from the equations of constraint disturbances. We use modified Helmholtz conditions to represent differential equations in the form of Lagrange equations. We give the solution of the Bertrand problem of determining the central force under the action of which a material point performs stable motion along a conic section.
Mots-clés : constraint equations, Lagrange equation, Bertrand problem.
Keywords: dissipative function, Helmholtz conditions
@article{CMFD_2024_70_3_a6,
     author = {R. G. Mukharlyamov},
     title = {Construction of equations of dynamics of a given structure based on equations of program constraints},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {428--440},
     publisher = {mathdoc},
     volume = {70},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a6/}
}
TY  - JOUR
AU  - R. G. Mukharlyamov
TI  - Construction of equations of dynamics of a given structure based on equations of program constraints
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 428
EP  - 440
VL  - 70
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a6/
LA  - ru
ID  - CMFD_2024_70_3_a6
ER  - 
%0 Journal Article
%A R. G. Mukharlyamov
%T Construction of equations of dynamics of a given structure based on equations of program constraints
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 428-440
%V 70
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a6/
%G ru
%F CMFD_2024_70_3_a6
R. G. Mukharlyamov. Construction of equations of dynamics of a given structure based on equations of program constraints. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 70 (2024) no. 3, pp. 428-440. http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a6/

[1] Y. Vitenburg, Dinamika sistem tverdykh tel, Mir, M., 1980 (in Russian)

[2] A. S. Galiullin, Metody resheniya obratnykh zadach dinamiki, Nauka, M., 1986 (in Russian)

[3] N. P. Erugin, “Construction of the entire set of systems of differential equations having a given integral curve”, Appl. Math. Mech., 21:6 (1952), 659–670 (in Russian)

[4] N. P. Erugin, Reading book for the general course of differential equations, Nauka i Tekhnika, Minsk, 1979 (in Russian)

[5] V. G. Imshenetskiy, “Determination of the force moving a material point along a conic section as a function of its coordinates”, Messages Kharkov Math. Soc., 1879, no. 1, 5–15 (in Russian)

[6] I. E. Kaspirovich and R. G. Mukharlyamov, “On methods of constructing dynamic equations taking into account the stabilization of constraints”, Bull. Russ. Acad. Sci. Ser. Solid Mech., 2019, no. 3, 124–135 (in Russian)

[7] R. G. Mukharlyamov, “On the construction of a set of systems of differential equations of stable motion on an integral manifold”, Differ. Equ., 5:4 (1969), 688–699 (in Russian)

[8] R. G. Mukharlyamov, “On the construction of differential equations of optimal motion along a given manifold”, Differ. Equ., 7:10 (1971), 1825–1834 (in Russian)

[9] R. G. Mukharlyamov, “Programmed motion control of adaptive optical system”, Bull. PFUR. Ser. Appl. Math. Inf., 1994, no. 1, 22–40 (in Russian)

[10] R. G. Mukharlyamov, “Reduction to a given structure of the equations of dynamics of systems with constraints”, Bull. Russ. Acad. Sci. Ser. Appl. Math. Mech., 71:3 (2007), 401–410 (in Russian)

[11] R. G. Mukharlyamov, “Modeling of control processes, stability and stabilization of systems with program constraints”, Bull. Russ. Acad. Sci. Ser. Theor. Control Sys., 2015, no. 1, 15–28 (in Russian)

[12] I. Newton, Philosophiae Naturalis Principia Mathematica, Russian translation, Nauka, M., 1989

[13] B. A. Rosenfeld, Multidimensional Spaces, Russian translation, Nauka, M., 1966

[14] Amirouche F., Fundamentals of Multibody Dynamics: Theory and Applications, Birkhäuser, Boston, 2006

[15] Ascher U., “Stabilization of invariant of discretized differential systems”, Numer. Algorithms, 14:1 (1997), 1–24

[16] Ascher U. M., Chin H., Petzold L. R., Reich S., “Stabilization of constrained mechanical systems with DAEs and invariant manifolds”, Mech. Struct. Machines, 23:2 (1995), 135–158

[17] Ascher U. M., Chin H., Reich S., “Stabilization of DAEs and invariant manifolds”, Numer. Math., 67 (1994), 131–149

[18] Baumgarte J., “Stabilization of constraints and integrals of motion in dynamical systems”, Comput. Methods Appl. Mech. Engrg., 1:1 (1972), 1–16 | DOI

[19] Bertrand M. G., “Théorème relatif au mouvement d'un point attiré vers un centre fixe”, Comp. Rend., 77:16 (1873), 849–853

[20] Darboux M. G., “Recherche de la loi que dois suivre une force centrale pour que la trajectoire quellle determine soit toujour une conique”, Comp. Rend., 76:16 (1877), 760–762

[21] Gonzales F., Kovecses J., “Use of penalty formulation in dynamic simulation and analysis of redundantly constrained multibody systems”, Mult. Sys. Dyn., 29 (2012), 57–76

[22] Kielau G., Maisser P., “A generalization of the Helmholtz conditions for the existence of a first-order Lagrangian”, Z. Angew. Math. Mech., 86 (2006), 722–735

[23] Santilli R. M., Foundations of Theoretical Mechanics, v. I, The Inverse Problem in Newtonian Mechanics, Springer, New York, ets., 1978

[24] Tleubergenov M. I., Ibraeva G. T., “On the closure of stochastic differential equations of motion”, Eurasian Math. J., 12:2 (2021), 82–89

[25] Tleubergenov M. I., Vassilina G. K., Abdrakhmanova A. A., “Representing a second-order Ito equation as an equation with a given force structure”, Bull. Karaganda Univ. Math. Ser., 2023, no. 4, 119–129

[26] Tleubergenov M. I., Vassilina G. K., Azhymbaev D. T., “Construction of the differential equations system of the program motion in Lagrangian variables in the presence of random perturbations”, Bull. Karaganda Univ. Math. Ser., 2022, no. 1, 118–126