Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2024_70_3_a4, author = {K. N. Zhuikov and A. Yu. Savin}, title = {On two methods of determining $\eta$-invariants of elliptic boundary-value problems}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {403--416}, publisher = {mathdoc}, volume = {70}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a4/} }
TY - JOUR AU - K. N. Zhuikov AU - A. Yu. Savin TI - On two methods of determining $\eta$-invariants of elliptic boundary-value problems JO - Contemporary Mathematics. Fundamental Directions PY - 2024 SP - 403 EP - 416 VL - 70 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a4/ LA - ru ID - CMFD_2024_70_3_a4 ER -
%0 Journal Article %A K. N. Zhuikov %A A. Yu. Savin %T On two methods of determining $\eta$-invariants of elliptic boundary-value problems %J Contemporary Mathematics. Fundamental Directions %D 2024 %P 403-416 %V 70 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a4/ %G ru %F CMFD_2024_70_3_a4
K. N. Zhuikov; A. Yu. Savin. On two methods of determining $\eta$-invariants of elliptic boundary-value problems. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 70 (2024) no. 3, pp. 403-416. http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a4/
[1] M. S. Agranovich and M. I. Vishik, “Elliptic problems with a parameter and parabolic problems of general form”, Progr. Math. Sci., 19:3 (1964), 53–161 (in Russian)
[2] H. Bateman and A. Erdélyi, Higher Transcendental Functions, Russian translation, v. 1, Nauka, M., 1973
[3] K. N. Zhuykov and A. Yu. Savin, “Eta-invariant of elliptic parameter-dependent boundary-value problems”, Contemp. Math. Fundam. Directions, 69, no. 4, 2023, 599–620 (in Russian)
[4] V. A. Kondrat'ev, “Boundary-value problems for elliptic equations in domains with conical or angular points”, Proc. Moscow Math. Soc., 16, 1967, 209–292 (in Russian)
[5] Atiyah M., Patodi V., Singer I., “Spectral asymmetry and Riemannian geometry. I”, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43–69
[6] Atiyah M., Patodi V., Singer I., “Spectral asymmetry and Riemannian geometry. II”, Math. Proc. Cambridge Philos. Soc., 78 (1976), 405–432
[7] Atiyah M., Patodi V., Singer I., “Spectral asymmetry and Riemannian geometry. III”, Math. Proc. Cambridge Philos. Soc., 79 (1976), 71–99
[8] Fedosov B., Schulze B.-W., Tarkhanov N., “The index of elliptic operators on manifolds with conical points”, Selecta Math. (N. S.), 5:4 (1999), 467–506
[9] Fedosov B., Schulze B.-W., Tarkhanov N., “A general index formula on toric manifolds with conical points”, Approaches to singular analysis, Birkhäuser, Basel, 2001, 234–256
[10] Gilkey P. B., Smith L., “The eta invariant for a class of elliptic boundary value problems”, Commun. Pure Appl. Math., 36 (1983), 85–132
[11] Gilkey P. B., Smith L., “The twisted index problem for manifolds with boundary”, J. Differ. Geom., 18:3 (1983), 393–444
[12] Lesch M., Differential Operators of Fuchs Type, Conical Singularities, and Asymptotic Methods, B. G. Teubner Verlag, Stuttgart—Leipzig, 1997
[13] Lesch M., Pflaum M., “Traces on algebras of parameter dependent pseudodifferential operators and the eta-invariant”, Trans. Am. Math. Soc., 352:11 (2000), 4911–4936
[14] Lidskii V. B., “Non-selfadjoint operators with a trace”, Dokl. Akad. Nauk SSSR, 125 (1959), 485–487
[15] Melrose R., “The eta invariant and families of pseudodifferential operators”, Math. Research Lett., 2:5 (1995), 541–561