On two methods of determining $\eta$-invariants of elliptic boundary-value problems
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 70 (2024) no. 3, pp. 403-416.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a class of boundary-value problems with a parameter that are elliptic in the sense of Agranovich–Vishik, we establish the equality of the $\eta$-invariant defined in terms of the Melrose regularization and the spectral $\eta$-invariant of the Atiyah–Patodi–Singer type defined using the analytic continuation of the spectral $\eta$-function of the operator.
Keywords: elliptic boundary-value problems with a parameter, regularized traces.
Mots-clés : $\eta$-invariants, spectral invariants
@article{CMFD_2024_70_3_a4,
     author = {K. N. Zhuikov and A. Yu. Savin},
     title = {On two methods of determining $\eta$-invariants of elliptic boundary-value problems},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {403--416},
     publisher = {mathdoc},
     volume = {70},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a4/}
}
TY  - JOUR
AU  - K. N. Zhuikov
AU  - A. Yu. Savin
TI  - On two methods of determining $\eta$-invariants of elliptic boundary-value problems
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 403
EP  - 416
VL  - 70
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a4/
LA  - ru
ID  - CMFD_2024_70_3_a4
ER  - 
%0 Journal Article
%A K. N. Zhuikov
%A A. Yu. Savin
%T On two methods of determining $\eta$-invariants of elliptic boundary-value problems
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 403-416
%V 70
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a4/
%G ru
%F CMFD_2024_70_3_a4
K. N. Zhuikov; A. Yu. Savin. On two methods of determining $\eta$-invariants of elliptic boundary-value problems. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 70 (2024) no. 3, pp. 403-416. http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a4/

[1] M. S. Agranovich and M. I. Vishik, “Elliptic problems with a parameter and parabolic problems of general form”, Progr. Math. Sci., 19:3 (1964), 53–161 (in Russian)

[2] H. Bateman and A. Erdélyi, Higher Transcendental Functions, Russian translation, v. 1, Nauka, M., 1973

[3] K. N. Zhuykov and A. Yu. Savin, “Eta-invariant of elliptic parameter-dependent boundary-value problems”, Contemp. Math. Fundam. Directions, 69, no. 4, 2023, 599–620 (in Russian)

[4] V. A. Kondrat'ev, “Boundary-value problems for elliptic equations in domains with conical or angular points”, Proc. Moscow Math. Soc., 16, 1967, 209–292 (in Russian)

[5] Atiyah M., Patodi V., Singer I., “Spectral asymmetry and Riemannian geometry. I”, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43–69

[6] Atiyah M., Patodi V., Singer I., “Spectral asymmetry and Riemannian geometry. II”, Math. Proc. Cambridge Philos. Soc., 78 (1976), 405–432

[7] Atiyah M., Patodi V., Singer I., “Spectral asymmetry and Riemannian geometry. III”, Math. Proc. Cambridge Philos. Soc., 79 (1976), 71–99

[8] Fedosov B., Schulze B.-W., Tarkhanov N., “The index of elliptic operators on manifolds with conical points”, Selecta Math. (N. S.), 5:4 (1999), 467–506

[9] Fedosov B., Schulze B.-W., Tarkhanov N., “A general index formula on toric manifolds with conical points”, Approaches to singular analysis, Birkhäuser, Basel, 2001, 234–256

[10] Gilkey P. B., Smith L., “The eta invariant for a class of elliptic boundary value problems”, Commun. Pure Appl. Math., 36 (1983), 85–132

[11] Gilkey P. B., Smith L., “The twisted index problem for manifolds with boundary”, J. Differ. Geom., 18:3 (1983), 393–444

[12] Lesch M., Differential Operators of Fuchs Type, Conical Singularities, and Asymptotic Methods, B. G. Teubner Verlag, Stuttgart—Leipzig, 1997

[13] Lesch M., Pflaum M., “Traces on algebras of parameter dependent pseudodifferential operators and the eta-invariant”, Trans. Am. Math. Soc., 352:11 (2000), 4911–4936

[14] Lidskii V. B., “Non-selfadjoint operators with a trace”, Dokl. Akad. Nauk SSSR, 125 (1959), 485–487

[15] Melrose R., “The eta invariant and families of pseudodifferential operators”, Math. Research Lett., 2:5 (1995), 541–561