On two methods of determining $\eta$-invariants of elliptic boundary-value problems
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 70 (2024) no. 3, pp. 403-416

Voir la notice de l'article provenant de la source Math-Net.Ru

For a class of boundary-value problems with a parameter that are elliptic in the sense of Agranovich–Vishik, we establish the equality of the $\eta$-invariant defined in terms of the Melrose regularization and the spectral $\eta$-invariant of the Atiyah–Patodi–Singer type defined using the analytic continuation of the spectral $\eta$-function of the operator.
Keywords: elliptic boundary-value problems with a parameter, regularized traces.
Mots-clés : $\eta$-invariants, spectral invariants
@article{CMFD_2024_70_3_a4,
     author = {K. N. Zhuikov and A. Yu. Savin},
     title = {On two methods of determining $\eta$-invariants of elliptic boundary-value problems},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {403--416},
     publisher = {mathdoc},
     volume = {70},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a4/}
}
TY  - JOUR
AU  - K. N. Zhuikov
AU  - A. Yu. Savin
TI  - On two methods of determining $\eta$-invariants of elliptic boundary-value problems
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 403
EP  - 416
VL  - 70
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a4/
LA  - ru
ID  - CMFD_2024_70_3_a4
ER  - 
%0 Journal Article
%A K. N. Zhuikov
%A A. Yu. Savin
%T On two methods of determining $\eta$-invariants of elliptic boundary-value problems
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 403-416
%V 70
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a4/
%G ru
%F CMFD_2024_70_3_a4
K. N. Zhuikov; A. Yu. Savin. On two methods of determining $\eta$-invariants of elliptic boundary-value problems. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 70 (2024) no. 3, pp. 403-416. http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a4/