On two methods of determining $\eta$-invariants of elliptic boundary-value problems
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 70 (2024) no. 3, pp. 403-416
Voir la notice de l'article provenant de la source Math-Net.Ru
For a class of boundary-value problems with a parameter that are elliptic in the sense of Agranovich–Vishik, we establish the equality of the $\eta$-invariant defined in terms of the Melrose regularization and the spectral $\eta$-invariant of the Atiyah–Patodi–Singer type defined using the analytic continuation of the spectral $\eta$-function of the operator.
Keywords:
elliptic boundary-value problems with a parameter, regularized traces.
Mots-clés : $\eta$-invariants, spectral invariants
Mots-clés : $\eta$-invariants, spectral invariants
@article{CMFD_2024_70_3_a4,
author = {K. N. Zhuikov and A. Yu. Savin},
title = {On two methods of determining $\eta$-invariants of elliptic boundary-value problems},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {403--416},
publisher = {mathdoc},
volume = {70},
number = {3},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a4/}
}
TY - JOUR AU - K. N. Zhuikov AU - A. Yu. Savin TI - On two methods of determining $\eta$-invariants of elliptic boundary-value problems JO - Contemporary Mathematics. Fundamental Directions PY - 2024 SP - 403 EP - 416 VL - 70 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a4/ LA - ru ID - CMFD_2024_70_3_a4 ER -
%0 Journal Article %A K. N. Zhuikov %A A. Yu. Savin %T On two methods of determining $\eta$-invariants of elliptic boundary-value problems %J Contemporary Mathematics. Fundamental Directions %D 2024 %P 403-416 %V 70 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a4/ %G ru %F CMFD_2024_70_3_a4
K. N. Zhuikov; A. Yu. Savin. On two methods of determining $\eta$-invariants of elliptic boundary-value problems. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 70 (2024) no. 3, pp. 403-416. http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a4/