On expanding attractors of arbitrary codimension
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 70 (2024) no. 3, pp. 389-402

Voir la notice de l'article provenant de la source Math-Net.Ru

Thanks to the works by R. V. Plykin and V. Z. Grines, the most studied expanding attractors are orientable attractors of codimension one of $A$-diffeomorphisms of multidimensional closed manifolds and one-dimensional attractors on closed surfaces. In this paper, we prove that there exist closed manifolds of any dimension, starting with three, admitting structurally stable diffeomorphisms and diffeomorphisms satisfying Smale's axiom A, with expanding attractors of arbitrary codimension. For some codimensions the type of manifolds is obtained.
Keywords: expanding attractor, $A$-diffeomorphism, closed manifold, attracting neighborhood.
@article{CMFD_2024_70_3_a3,
     author = {E. V. Zhuzhoma and V. S. Medvedev},
     title = {On expanding attractors of arbitrary codimension},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {389--402},
     publisher = {mathdoc},
     volume = {70},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a3/}
}
TY  - JOUR
AU  - E. V. Zhuzhoma
AU  - V. S. Medvedev
TI  - On expanding attractors of arbitrary codimension
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 389
EP  - 402
VL  - 70
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a3/
LA  - ru
ID  - CMFD_2024_70_3_a3
ER  - 
%0 Journal Article
%A E. V. Zhuzhoma
%A V. S. Medvedev
%T On expanding attractors of arbitrary codimension
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 389-402
%V 70
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a3/
%G ru
%F CMFD_2024_70_3_a3
E. V. Zhuzhoma; V. S. Medvedev. On expanding attractors of arbitrary codimension. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 70 (2024) no. 3, pp. 389-402. http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a3/