Triviality of outer derivations in $\ell_p(G)$ for one class of groups
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 70 (2024) no. 3, pp. 356-374.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study derivations in group rings completed by various types of norms. The main attention is paid to the class of groups in which conjugations act in a controlled manner in some sense. Using the method of identifying derivations and characters on some category, we obtain an alternative way of proving that for this class of groups all derivations are inner.
Keywords: derivation on algebras, outer derivation, inner derivation, character.
@article{CMFD_2024_70_3_a1,
     author = {A. A. Arutyunov and A. V. Naianzin},
     title = {Triviality of outer derivations in $\ell_p(G)$ for one class of groups},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {356--374},
     publisher = {mathdoc},
     volume = {70},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a1/}
}
TY  - JOUR
AU  - A. A. Arutyunov
AU  - A. V. Naianzin
TI  - Triviality of outer derivations in $\ell_p(G)$ for one class of groups
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 356
EP  - 374
VL  - 70
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a1/
LA  - ru
ID  - CMFD_2024_70_3_a1
ER  - 
%0 Journal Article
%A A. A. Arutyunov
%A A. V. Naianzin
%T Triviality of outer derivations in $\ell_p(G)$ for one class of groups
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 356-374
%V 70
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a1/
%G ru
%F CMFD_2024_70_3_a1
A. A. Arutyunov; A. V. Naianzin. Triviality of outer derivations in $\ell_p(G)$ for one class of groups. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 70 (2024) no. 3, pp. 356-374. http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a1/

[1] A. A. Arutyunov, “Derivation algebra in noncommutative group algebras”, Proc. Math. Inst. Russ. Acad. Sci., 308 (2020), 28–41 (in Russian) | DOI

[2] A. A. Arutyunov, A. S. Mishchenko, and A. I. Shtern, “Derivations of group algebras”, Fundam. Appl. Math., 21:6 (2016), 65–78 (in Russian)

[3] A. A. Arutyunov and A. S. Mishchenko, “A smooth version of Johnson's problem on derivations of group algebras”, Math. Digest, 210:6 (2019), 3–29 (in Russian) | DOI

[4] M. A. Naimark, Normed Rings, Fizmatlit, M., 2010 (in Russian)

[5] Alekseev A., Arutyunov A., Silvestrov S., “On $(\sigma,\tau )$-derivations of group algebra as category characters”, Non-Commutative and Non-Associative Algebra and Analysis Structures, Springer, Cham, 2023, 81–99 | DOI

[6] Arutyunov A., “A combinatorial view on derivations in bimodules”, Adv. Syst. Sci. Appl., 23:2 (2023), 178–183 | DOI

[7] Bader U., Gelander T., Monod N., “A fixed point theorem for L1 spaces”, Invent. Math., 189 (2010), 143–148

[8] Dales H. G., Banach Algebras and Automatic Continuity, Oxford Univ. Press, Oxford, 2001

[9] Deitmar A., Echterhoff S., Principles of Harmonic Analysis, Springer, Cham, etc., 2014

[10] Hurley P., Hurley T., “Codes from zero-divisors and units in group rings”, Int. J. Inform. Coding Theory, 1:1 (2009), 57–87 | DOI

[11] Johnson B. E., Cohomology in Banach Algebras, Am. Math. Soc., Providence, 1972

[12] Johnson B. E., “The derivation problem for group algebras of connected locally compact groups”, J. London Math. Soc., 63:2 (2001), 441–452 | DOI

[13] Johnson B. E., Ringrose J. R., “Derivations of operator algebras and discrete group algebras”, Bull. London Math. Soc., 1:1 (1969), 70–74 | DOI

[14] Johnson B. E., Sinclair A. M., “Continuity of derivations and a problem of Kaplansky”, Am. J. Math., 90:4 (1968), 1067–1073 | DOI

[15] Losert V., “The derivation problem for group algebras”, Ann. Math., 168:1 (2008), 221–246 | DOI

[16] Mishchenko A. S., “Derivations of group algebras and Hochschild cohomology”, Differential Equations on Manifolds and Mathematical Physics: Dedicated to the Memory of Boris Sternin, Birkhäuser, Cham, 2021, 263–272 | DOI

[17] Mishchenko A. S., “Geometric description of the Hochschild cohomology of group algebras”, Topology, Geometry, and Dynamics: V. A. Rokhlin-Memorial, Am. Math. Soc., Providence, 2021, 267–280

[18] Murphy G., “Aspects of the theory of derivations”, Banach Center Publ., 30:1 (1994), 267–275

[19] Murphy W., The nonvanishing first Hochschild cohomology of twisted finite simple group algebras, 2022, arXiv: 2207.03698 [math.GR]

[20] Neumann B. H., “Groups covered By permutable subsets”, J. London Math. Soc., s1-29:2 (1954), 236–248 | DOI

[21] Palmer Th. W., Banach Algebras and the General Theory of *-Algebras, v. 1, Algebras and Banach Algebras, Cambridge University Press, Cambridge, 1994

[22] Pierce R. S., Associative Algebras, Springer, New York—Heidelberg—Berlin, 1982

[23] Rickart C. E., General Theory of Banach Algebras, Van Nostrand, Princeton, 1960

[24] Sakai Sh., “On a conjecture of Kaplansky”, Tohoku Math. J., 12 (1960), 31–33

[25] Sakai Sh., “Derivations of W*-algebras”, Ann. Math., 83:2 (1966), 273–279 | DOI

[26] Todea C.-C., Nontriviality of the first Hochschild cohomology of some block algebras of finite groups, 2022, arXiv: 2206.09108 [math.KT]