On the formulation of boundary-value problems for binomial functional equations
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 70 (2024) no. 3, pp. 343-355

Voir la notice de l'article provenant de la source Math-Net.Ru

In a number of previous works it was found that for binomial functional equations of the form $$ \hspace{-1.5cm} a(x)u(\alpha(x)) - \lambda u(x) = v(x), x \in X, $$ where $\alpha:X \to X$ is an invertible mapping of the set $X$ into itself, a situation typical for differential equations is possible: the equation is solvable for any right-hand side and there is no uniqueness of the solution. As in the case of differential equations, the question arises of formulating well-posed boundary value problems, i.e., of specifying additional conditions under which the solution exists and is unique. In this paper, we discuss the question of what kind of additional conditions lead to well-posed boundary-value problems for the equations under consideration.
Keywords: binomial functional equation, uniqueness of solution, well-posed boundary-value problem.
@article{CMFD_2024_70_3_a0,
     author = {A. B. Antonevich and D. I. Kravtsov},
     title = {On the formulation of boundary-value problems for binomial functional equations},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {343--355},
     publisher = {mathdoc},
     volume = {70},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a0/}
}
TY  - JOUR
AU  - A. B. Antonevich
AU  - D. I. Kravtsov
TI  - On the formulation of boundary-value problems for binomial functional equations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 343
EP  - 355
VL  - 70
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a0/
LA  - ru
ID  - CMFD_2024_70_3_a0
ER  - 
%0 Journal Article
%A A. B. Antonevich
%A D. I. Kravtsov
%T On the formulation of boundary-value problems for binomial functional equations
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 343-355
%V 70
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a0/
%G ru
%F CMFD_2024_70_3_a0
A. B. Antonevich; D. I. Kravtsov. On the formulation of boundary-value problems for binomial functional equations. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 70 (2024) no. 3, pp. 343-355. http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a0/