Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2024_70_3_a0, author = {A. B. Antonevich and D. I. Kravtsov}, title = {On the formulation of boundary-value problems for binomial functional equations}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {343--355}, publisher = {mathdoc}, volume = {70}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a0/} }
TY - JOUR AU - A. B. Antonevich AU - D. I. Kravtsov TI - On the formulation of boundary-value problems for binomial functional equations JO - Contemporary Mathematics. Fundamental Directions PY - 2024 SP - 343 EP - 355 VL - 70 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a0/ LA - ru ID - CMFD_2024_70_3_a0 ER -
%0 Journal Article %A A. B. Antonevich %A D. I. Kravtsov %T On the formulation of boundary-value problems for binomial functional equations %J Contemporary Mathematics. Fundamental Directions %D 2024 %P 343-355 %V 70 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a0/ %G ru %F CMFD_2024_70_3_a0
A. B. Antonevich; D. I. Kravtsov. On the formulation of boundary-value problems for binomial functional equations. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 70 (2024) no. 3, pp. 343-355. http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a0/
[1] A. B. Antonevich, Linear Functional Equations: Operator Approach, Universitetskoe, Minsk, 1988 (in Russian)
[2] A. B. Antonevich, “Coherent local hyperbolicity of a linear extension and essential spectra of the weighted shift operator on a segment”, Funct. Anal. Appl., 39:1 (2005), 52–69 (in Russian)
[3] A. B. Antonevich, “Right-sided invertibility of binomial functional operators and graded dichotomy”, Contemp. Math. Fundam. Directions, 67, no. 2, 2021, 208–236 (in Russian)
[4] A. B. Antonevich, A. A. Akhmatova, and Yu. Makovska, “Mappings with separable dynamics and spectral properties of the operators generated by them”, Math. Digest, 206:3 (2015), 3–34 (in Russian)
[5] A. B. Antonevich and E. V. Panteleeva, “Well-posed boundary-value problems, right-sided hyperbolicity and exponential dichotomy”, Math. Notes, 100:1 (2016), 13–29 (in Russian)
[6] O. A. Arkhipenko, “Boundary-value problems for difference equations”, Proc. BGTU. Ser. 3. Phys. Math. Sci. Inf., 2018, no. 1, 12–18 (in Russian)
[7] Yu. I. Karlovich and R. Mardiev, “On one-sided invertibility of functional operators with non-Carleman shift in Hölder spaces”, Bull. Higher Edu. Inst. Ser. Math., 3 (1987), 77–80 (in Russian)
[8] Ya. B. Lopatinskii, “On a method of reducing boundary-value problems for a system of differential equations of elliptic type to regular integral equations”, Ukr. Math. J., 5 (1953), 123–151 (in Russian)
[9] R. Mardiev, “A criterion for the semi-Noetherian property of a class of singular integral operators with non-Carleman shift”, Rep. Acad. Sci. UzSSR, 2 (1985), 5–7 (in Russian)
[10] A. Shukur Ali and O. A. Arkhipenko, “Resolvent of a boundary-value problem for a difference equation”, Probl. Phys. Math. Tech., 2016, no. 3(28), 70–75 (in Russian)
[11] Antonevich A., Makowska Yu., “On spectral properties of weighted shift operators generated by mappings with saddle points”, Complex Anal. Oper. Theory, 2 (2008), 215–240
[12] Karlovich A. Yu., Karlovich Yu. I., “One-sided invertibility of binomial functional operators with a shift in rearrangement-invariant spaces”, Integral Equ. Oper. Theory, 42 (2002), 201–228