@article{CMFD_2024_70_2_a4,
author = {R. Islam and A. Ibragimov},
title = {Class of {Keller{\textendash}Segel} chemotactic systems based on {Einstein} method of {Brownian} motion modeling},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {253--277},
year = {2024},
volume = {70},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a4/}
}
TY - JOUR AU - R. Islam AU - A. Ibragimov TI - Class of Keller–Segel chemotactic systems based on Einstein method of Brownian motion modeling JO - Contemporary Mathematics. Fundamental Directions PY - 2024 SP - 253 EP - 277 VL - 70 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a4/ LA - ru ID - CMFD_2024_70_2_a4 ER -
%0 Journal Article %A R. Islam %A A. Ibragimov %T Class of Keller–Segel chemotactic systems based on Einstein method of Brownian motion modeling %J Contemporary Mathematics. Fundamental Directions %D 2024 %P 253-277 %V 70 %N 2 %U http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a4/ %G ru %F CMFD_2024_70_2_a4
R. Islam; A. Ibragimov. Class of Keller–Segel chemotactic systems based on Einstein method of Brownian motion modeling. Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 2, pp. 253-277. http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a4/
[1] Adler J., “Effect of amino acids and oxygen on chemotaxis in escherichia coli”, J. Bacteriology, 92:1 (1966), 121–129 | DOI
[2] Belopolskaya Y. I., “Stochastic models of chemotaxis processes”, J. Math. Sci. (N. Y.), 251:1 (2020), 1–14 | DOI | MR | Zbl
[3] Carrillo J. A., Li J., Wang Zh., “Boundary spike-layer solutions of the singular Keller—Segel system: existence and stability”, Proc. Lond. Math. Soc. (3), 122:1 (2021), 42–68 | DOI | MR | Zbl
[4] Chavanis P. H., “A stochastic Keller—Segel model of chemotaxis”, Commun. Nonlinear Sci. Numer. Simul., 15:1 (2010), 60–70 | DOI | MR | Zbl
[5] Davis P. N., van Heijster P., Marangell R., “Absolute instabilities of travelling wave solutions in a Keller—Segel model”, Nonlinearity, 30:11 (2017), 4029–4061 | DOI | MR | Zbl
[6] Einstein A., “Uber die von der molekularkinetischen theorie der warme geforderte bewegung von in ruhenden flussigkeiten suspendierten teilchen”, Ann. Phys. Leipzig, 322 (1905), 549–560 | DOI
[7] Fu S., Huang G., Adam B., “Instability in a generalized multi-species Keller—Segel chemotaxis model”, Comput. Math. Appl., 72:9 (2016), 2280–2288 | DOI | MR | Zbl
[8] Gobbetti M., De Angelis M., Di Cagno R., Minervini F., Limitone A., “Cell–cell communication in food related bacteria”, Int. J. Food Microbiology, 120:1-2 (2007), 34–45 | DOI
[9] Ibragimov A., Peace A., “Light driven interactions in spatial predator–prey chemotaxis model in the presence of chemical agent”, J. Pure Appl. Math., 2:1 (2022), 222–244
[10] Keller E. F., Segel L. A., “Traveling bands of chemotactic bacteria: A theoretical analysis”, J. Theor. Biol., 30:2 (1971), 235–248 | DOI | Zbl
[11] Li Yi, Li Yong, Wu Y., Zhang H., “Spectral stability of bacteria pulses for a Keller—Segel chemotactic model”, J. Differ. Equ, 304 (2021), 229–286 | DOI | MR | Zbl
[12] Qiao Q., “Traveling waves and their spectral instability in volume-filling chemotaxis model”, J. Differ. Equ, 382 (2024), 77–96 | DOI | MR | Zbl
[13] Romanczuk P., Erdmann U., Engel H., Schimansky-Geier L., “Beyond the Keller—Segel model: Microscopic modelling of bacterial colonies”, Eur. Phys. J. Spec. Topics, 157 (2008), 61–77 | DOI
[14] Skorokhod A., Basic principles and applications of probability theory, Springer, Berlin—Heidelberg, 2005 | MR | Zbl
[15] Stevens A., “The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems”, SIAM J. Appl. Math., 61:1 (2000), 183–212 | DOI | MR | Zbl
[16] Stevens A., Othmer H. G., “Aggregation, blowup, and collapse: the abc's of taxis in reinforced random walks”, SIAM J. Appl. Math., 57:4 (1997), 1044–1081 | DOI | MR | Zbl
[17] Tindall M., Maini P., Porter S., Armitage J., “Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations”, Bull. Math. Biol., 70:6 (2008), 1570–607 | DOI | MR
[18] Tomasevic M., Talay D., “A new McKean—Vlasov stochastic interpretation of the parabolic-parabolic Keller—Segel model: The one-dimensional case”, Bernoulli, 26:2 (2020), 1323–1353 | MR | Zbl
[19] Wang Q., Yan J., Gai C., “Qualitative analysis of stationary Keller—Segel chemotaxis models with logistic growth”, Z. Angew. Math. Phys., 67:3 (2016), 51 | DOI | MR