Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2024_70_2_a4, author = {R. Islam and A. Ibragimov}, title = {Class of {Keller--Segel} chemotactic systems based on {Einstein} method of {Brownian} motion modeling}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {253--277}, publisher = {mathdoc}, volume = {70}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a4/} }
TY - JOUR AU - R. Islam AU - A. Ibragimov TI - Class of Keller--Segel chemotactic systems based on Einstein method of Brownian motion modeling JO - Contemporary Mathematics. Fundamental Directions PY - 2024 SP - 253 EP - 277 VL - 70 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a4/ LA - ru ID - CMFD_2024_70_2_a4 ER -
%0 Journal Article %A R. Islam %A A. Ibragimov %T Class of Keller--Segel chemotactic systems based on Einstein method of Brownian motion modeling %J Contemporary Mathematics. Fundamental Directions %D 2024 %P 253-277 %V 70 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a4/ %G ru %F CMFD_2024_70_2_a4
R. Islam; A. Ibragimov. Class of Keller--Segel chemotactic systems based on Einstein method of Brownian motion modeling. Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 2, pp. 253-277. http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a4/
[1] Adler J., “Effect of amino acids and oxygen on chemotaxis in escherichia coli”, J. Bacteriology, 92:1 (1966), 121–129 | DOI
[2] Belopolskaya Y. I., “Stochastic models of chemotaxis processes”, J. Math. Sci. (N. Y.), 251:1 (2020), 1–14 | DOI | MR | Zbl
[3] Carrillo J. A., Li J., Wang Zh., “Boundary spike-layer solutions of the singular Keller—Segel system: existence and stability”, Proc. Lond. Math. Soc. (3), 122:1 (2021), 42–68 | DOI | MR | Zbl
[4] Chavanis P. H., “A stochastic Keller—Segel model of chemotaxis”, Commun. Nonlinear Sci. Numer. Simul., 15:1 (2010), 60–70 | DOI | MR | Zbl
[5] Davis P. N., van Heijster P., Marangell R., “Absolute instabilities of travelling wave solutions in a Keller—Segel model”, Nonlinearity, 30:11 (2017), 4029–4061 | DOI | MR | Zbl
[6] Einstein A., “Uber die von der molekularkinetischen theorie der warme geforderte bewegung von in ruhenden flussigkeiten suspendierten teilchen”, Ann. Phys. Leipzig, 322 (1905), 549–560 | DOI
[7] Fu S., Huang G., Adam B., “Instability in a generalized multi-species Keller—Segel chemotaxis model”, Comput. Math. Appl., 72:9 (2016), 2280–2288 | DOI | MR | Zbl
[8] Gobbetti M., De Angelis M., Di Cagno R., Minervini F., Limitone A., “Cell–cell communication in food related bacteria”, Int. J. Food Microbiology, 120:1-2 (2007), 34–45 | DOI
[9] Ibragimov A., Peace A., “Light driven interactions in spatial predator–prey chemotaxis model in the presence of chemical agent”, J. Pure Appl. Math., 2:1 (2022), 222–244
[10] Keller E. F., Segel L. A., “Traveling bands of chemotactic bacteria: A theoretical analysis”, J. Theor. Biol., 30:2 (1971), 235–248 | DOI | Zbl
[11] Li Yi, Li Yong, Wu Y., Zhang H., “Spectral stability of bacteria pulses for a Keller—Segel chemotactic model”, J. Differ. Equ, 304 (2021), 229–286 | DOI | MR | Zbl
[12] Qiao Q., “Traveling waves and their spectral instability in volume-filling chemotaxis model”, J. Differ. Equ, 382 (2024), 77–96 | DOI | MR | Zbl
[13] Romanczuk P., Erdmann U., Engel H., Schimansky-Geier L., “Beyond the Keller—Segel model: Microscopic modelling of bacterial colonies”, Eur. Phys. J. Spec. Topics, 157 (2008), 61–77 | DOI
[14] Skorokhod A., Basic principles and applications of probability theory, Springer, Berlin—Heidelberg, 2005 | MR | Zbl
[15] Stevens A., “The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems”, SIAM J. Appl. Math., 61:1 (2000), 183–212 | DOI | MR | Zbl
[16] Stevens A., Othmer H. G., “Aggregation, blowup, and collapse: the abc's of taxis in reinforced random walks”, SIAM J. Appl. Math., 57:4 (1997), 1044–1081 | DOI | MR | Zbl
[17] Tindall M., Maini P., Porter S., Armitage J., “Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations”, Bull. Math. Biol., 70:6 (2008), 1570–607 | DOI | MR
[18] Tomasevic M., Talay D., “A new McKean—Vlasov stochastic interpretation of the parabolic-parabolic Keller—Segel model: The one-dimensional case”, Bernoulli, 26:2 (2020), 1323–1353 | MR | Zbl
[19] Wang Q., Yan J., Gai C., “Qualitative analysis of stationary Keller—Segel chemotaxis models with logistic growth”, Z. Angew. Math. Phys., 67:3 (2016), 51 | DOI | MR