Construction of flat vector fields with prescribed global topological structures
Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 2, pp. 237-252.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present a method for constructing vector fields whose phase portraits have finite sets of prescribed special trajectories (limit cycles, simple and complex singular points, separatrices) and prescribed topological structures in limited domains of the phase plane. The problem of constructing such vector fields is a generalization of a number of well-known inverse problems of the qualitative theory of ordinary differential equations. The proposed method for solving it expands the possibilities of mathematical modeling of dynamic systems with prescribed properties in various fields of science and technology.
Keywords: vector field, ODE system, qualitative ODE theory, topological structure, dynamical system, inverse problem.
Mots-clés : phase portrait
@article{CMFD_2024_70_2_a3,
     author = {S. V. Volkov},
     title = {Construction of flat vector fields with prescribed global topological structures},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {237--252},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a3/}
}
TY  - JOUR
AU  - S. V. Volkov
TI  - Construction of flat vector fields with prescribed global topological structures
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 237
EP  - 252
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a3/
LA  - ru
ID  - CMFD_2024_70_2_a3
ER  - 
%0 Journal Article
%A S. V. Volkov
%T Construction of flat vector fields with prescribed global topological structures
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 237-252
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a3/
%G ru
%F CMFD_2024_70_2_a3
S. V. Volkov. Construction of flat vector fields with prescribed global topological structures. Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 2, pp. 237-252. http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a3/

[1] Almukhamedov M. I., “Obratnaya zadacha kachestvennoi teorii differentsialnykh uravnenii”, Izv. vuzov. Ser. Mat., 1963, no. 4, 3–6 | MR | Zbl

[2] Almukhamedov M. I., “O konstruirovanii differentsialnogo uravneniya, imeyuschego svoimi predelnye tsiklami zadannye krivye”, Izv. vuzov. Ser. Mat., 1965, no. 1, 12–16 | MR | Zbl

[3] Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G., Kachestvennaya teoriya dinamicheskikh sistem na ploskosti, Nauka, M., 1966 | MR

[4] Volkov S. V., “Postroenie ploskikh vektornykh polei s neprostoi osoboi tochkoi zadannoi topologicheskoi struktury”, Sovrem. mat. Fundam. napravl., 68, no. 4, 2022, 575–595

[5] Galiullin A. S., Obratnye zadachi dinamiki, Mir, M., 1984

[6] Galiullin A. S., Metody resheniya obratnykh zadach dinamiki, Nauka, M., 1986

[7] Erugin N. P., “Postroenie vsego mnozhestva sistem differentsialnykh uravnenii, imeyuschikh zadannuyu integralnuyu krivuyu”, Prikl. mat. mekh., 16:6 (1952), 659–670 | Zbl

[8] Mukharlyamov R. G., “K obratnym zadacham kachestvennoi teorii differentsialnykh uravnenii”, Diff. uravn., 3:19 (1967), 1673–1681 | MR | Zbl

[9] Frommer M., “Integralnye krivye obyknovennogo differentsialnogo uravneniya pervogo poryadka v okrestnosti osoboi tochki, imeyuschei ratsionalnyi kharakter”, Usp. mat. nauk, 1941, no. 9, 212–253

[10] Argémi J., “Sur les points singuliers muptiples de systèms dynamiques dans $\mathbb{R}^2$”, Ann. Mat. Pura Appl., 79 (1968), 35–69 | DOI | MR | Zbl

[11] Jaumes G., “Synthèse d'un système dynamique correspondant a un portrait topologique donné”, Int. J. Nonlinear Mech., 7:6 (1972), 597–608 | DOI | Zbl

[12] Sverdlove R., “Inverse problems for dynamical systems”, J. Differ. Equ, 42:1 (1981), 72–105 | DOI | MR | Zbl