Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2024_70_2_a2, author = {S. K. Vodopyanov and S. Pavlov}, title = {Functional properties of limits of {Sobolev} homeomorphisms with integrable distortion}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {215--236}, publisher = {mathdoc}, volume = {70}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a2/} }
TY - JOUR AU - S. K. Vodopyanov AU - S. Pavlov TI - Functional properties of limits of Sobolev homeomorphisms with integrable distortion JO - Contemporary Mathematics. Fundamental Directions PY - 2024 SP - 215 EP - 236 VL - 70 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a2/ LA - ru ID - CMFD_2024_70_2_a2 ER -
%0 Journal Article %A S. K. Vodopyanov %A S. Pavlov %T Functional properties of limits of Sobolev homeomorphisms with integrable distortion %J Contemporary Mathematics. Fundamental Directions %D 2024 %P 215-236 %V 70 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a2/ %G ru %F CMFD_2024_70_2_a2
S. K. Vodopyanov; S. Pavlov. Functional properties of limits of Sobolev homeomorphisms with integrable distortion. Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 2, pp. 215-236. http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a2/
[1] Basalaev S. G., Vodopyanov S. K., “Nepreryvnost po Gelderu sledov funktsii klassa Soboleva na giperpoverkhnostyakh grupp Karno i $\mathcal P$-differentsiruemost sobolevskikh otobrazhenii”, Sib. mat. zh., 64:4 (2023), 700–719 | Zbl
[2] Basalaev S. G., Vodopyanov S. K., “Otkrytost i diskretnost otobrazhenii s konechnym iskazheniem na gruppakh Karno”, Sib. mat. zh., 64:6 (2023), 1151–1159 | Zbl
[3] Brudnyi Yu. A., Kotlyar B. D., “Odna zadacha kombinatornoi geometrii”, Sib. mat. zh., 11:5 (1970), 1171–1173 | MR | Zbl
[4] Vodopyanov S. K., “O zamknutosti klassov otobrazhenii s ogranichennym iskazheniem na gruppakh Karno”, Mat. tr., 5:2 (2002), 92–137 | MR | Zbl
[5] Vodopyanov S. K., “Operatory podstanovki prostranstv Soboleva”, Sovremennye problemy teorii funktsii i ikh prilozhenii, Tez. dokl. konferentsii (g. Saratov, 2002 g.), 2002, 42–43
[6] Vodopyanov S. K., “O regulyarnosti otobrazhenii, obratnykh k sobolevskim”, Mat. sb., 203:10 (2012), 3–32 | DOI | Zbl
[7] Vodopyanov S. K., “Dopustimye zameny peremennykh dlya funktsii klassov Soboleva na (sub)rimanovykh mnogoobraziyakh”, Mat. sb., 210:1 (2019), 63–112 | DOI | MR | Zbl
[8] Vodopyanov S. K., “O regulyarnosti otobrazhenii, obratnykh k sobolevskim i teoriya $\mathcal Q_{q,p}$-gomeomorfizmov”, Sib. mat. zh., 61:6 (2020), 1257–1299 | MR | Zbl
[9] Vodopyanov S. K., “Nepreryvnost otobrazhenii klassa Coboleva $W^1_{\nu,\mathrm{loc}}$ s konechnym iskazheniem na gruppakh Karno”, Sib. mat. zh., 64:5 (2023), 912–934 | Zbl
[10] Vodopyanov S. K., Evseev N. A., “Funktsionalnye i analiticheskie svoistva odnogo klassa otobrazhenii kvazikonformnogo analiza na gruppakh Karno”, Sib. mat. zh., 63:2 (2022), 283–315 | Zbl
[11] Vodopyanov S. K., Ukhlov A. D., “Prostranstva Coboleva i $(P,Q)$-kvazikonformnye otobrazheniya grupp Karno”, Sib. mat. zh., 39:4 (1998), 776–795 | MR | Zbl
[12] Gusman M., Differentsirovanie integralov v $\mathbb R^n$, Mir, M., 1978
[13] Kantorovich L. V., Vulikh B. Z., Pinsker A. G., Funktsionalnyi analiz v poluuporyadochennykh prostranstvakh, Gostekhizdat, M.–L., 1950
[14] Mazya V. G., Prostranstva S. L. Soboleva, Leningr. un-t, L., 1985 | MR
[15] Reshetnyak Yu. G., Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982
[16] Reshetnyak Yu. G., “Sobolevskie klassy funktsii so znacheniyami v metricheskom prostranstve”, Sib. mat. zh., 38:3 (1997), 657–675 | MR | Zbl
[17] Reshetnyak Yu. G., “Sobolevskie klassy funktsii so znacheniyami v metricheskom prostranstve. II”, Sib. mat. zh., 45:4 (2004), 855–870 | MR | Zbl
[18] Evans L. K., Gariepi R. F., Teoriya mery i tonkie svoistva funktsii, Nauchnaya kniga, Novosibirsk, 2002
[19] Ball J. M., “Convexity conditions and existence theorems in nonlinear elasticity”, Arch. Ration. Mech. Anal., 63 (1977), 337–403 | DOI | MR | Zbl
[20] Ball J. M., “Global invertibility of Sobolev functions and the interpretation of matter”, Proc. R. Soc. Edinb. Sect. A, 88 (1981), 315–328 | DOI | MR | Zbl
[21] Christodoulou D., “On the geometry and dynamics of crystalline continua”, Ann. Inst. Henri Poincaré, 69:3 (1998), 335–358 | MR | Zbl
[22] Ciarlet P. G., Mathematical Elasticity, v. I, Three-Dimensional Elasticity, North-Holland, Amsterdam, 1988 | MR | Zbl
[23] Folland G. B., Stein E. M., Hardy spaces on homogeneous groups, Princeton Univ. Press, Princeton, 1982 | MR | Zbl
[24] Gromov M., “Carnot—Caratheodory spaces seen from within”, Sub-Riemannian Geometry, Birkhäuser, Basel, 1996, 79–323 | DOI | MR | Zbl
[25] Isangulova D. V., Vodopyanov S. K., “Coercive estimates and integral representation formulas on Carnot groups”, Eurasian Math. J., 1:3 (2010), 58–96 | MR | Zbl
[26] Maione A., Variational convergences for functionals and differential operators depending on vector fields, Diss. kand. nauk. University of Trento, 2020, 145 pp.
[27] Molchanova A., Vodopyanov S., “Injectivity almost everywhere and mappings with finite distortion in nonlinear elasticity”, Calc. Var. Part. Differ. Equ, 59:17 (2019), 2–25 | MR
[28] Pansu P., “Métriques de Carnot—Carathéodory et quasiisométries des espaces symétriques de rang un”, Ann. Math., 129:1 (1989), 1–60 | DOI | MR | Zbl
[29] Ukhlov A. D., Vodopyanov S. K., “Set functions and their applications in the theory of Lebesgue and Sobolev spaces. I”, Sib. Adv. Math., 14:4 (2004), 78–125 | MR | Zbl
[30] Ukhlov A. D., Vodopyanov S. K., “Set functions and their applications in the theory of Lebesgue and Sobolev spaces. II”, Sib. Adv. Math., 15:1 (2005), 1–35 | MR
[31] Vodop'yanov S. K., “$\mathcal P$-Differentiability on Carnot groups in different topologies and related topics”, Proceedings on Analysis and Geometry, Sobolev Institute Press, Novosibirsk, 2000, 603–670 | Zbl
[32] Vodop'yanov S. K., “Geometry of Carnot—Carathéodory spaces and differentiability of mappings”, Contemp. Math., 424, 2007, 247–302 | DOI