Functional properties of limits of Sobolev homeomorphisms with integrable distortion
Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 2, pp. 215-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

The functional and geometric properties of limits of homeomorphisms with integrable distortion of domains in Carnot groups are studied. The homeomorphisms belong to Sobolev classes. Conditions are obtained under which the limits of sequences of such homeomorphisms also belong to the Sobolev class, have a finite distortion, and have the $\mathcal N^{-1}$-Luzin property. In the case of Carnot groups of $H$-type, sufficient conditions are obtained that are imposed on domains and a sequence of homeomorphisms under which the limit mapping is injective almost everywhere. These results play a key role in finding extremal solutions to problems in the mathematical theory of elasticity on $H$-type Carnot groups, which are the subject of subsequent works by the authors.
Keywords: class of Sobolev mappings, mapping with finite distortion, external operator distortion function, limit property of Sobolev mappings, $\mathcal N^{-1}$-Luzin property, injectivity almost everywhere.
Mots-clés : Carnot group
@article{CMFD_2024_70_2_a2,
     author = {S. K. Vodopyanov and S. Pavlov},
     title = {Functional properties of limits of {Sobolev} homeomorphisms with integrable distortion},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {215--236},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a2/}
}
TY  - JOUR
AU  - S. K. Vodopyanov
AU  - S. Pavlov
TI  - Functional properties of limits of Sobolev homeomorphisms with integrable distortion
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 215
EP  - 236
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a2/
LA  - ru
ID  - CMFD_2024_70_2_a2
ER  - 
%0 Journal Article
%A S. K. Vodopyanov
%A S. Pavlov
%T Functional properties of limits of Sobolev homeomorphisms with integrable distortion
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 215-236
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a2/
%G ru
%F CMFD_2024_70_2_a2
S. K. Vodopyanov; S. Pavlov. Functional properties of limits of Sobolev homeomorphisms with integrable distortion. Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 2, pp. 215-236. http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a2/

[1] Basalaev S. G., Vodopyanov S. K., “Nepreryvnost po Gelderu sledov funktsii klassa Soboleva na giperpoverkhnostyakh grupp Karno i $\mathcal P$-differentsiruemost sobolevskikh otobrazhenii”, Sib. mat. zh., 64:4 (2023), 700–719 | Zbl

[2] Basalaev S. G., Vodopyanov S. K., “Otkrytost i diskretnost otobrazhenii s konechnym iskazheniem na gruppakh Karno”, Sib. mat. zh., 64:6 (2023), 1151–1159 | Zbl

[3] Brudnyi Yu. A., Kotlyar B. D., “Odna zadacha kombinatornoi geometrii”, Sib. mat. zh., 11:5 (1970), 1171–1173 | MR | Zbl

[4] Vodopyanov S. K., “O zamknutosti klassov otobrazhenii s ogranichennym iskazheniem na gruppakh Karno”, Mat. tr., 5:2 (2002), 92–137 | MR | Zbl

[5] Vodopyanov S. K., “Operatory podstanovki prostranstv Soboleva”, Sovremennye problemy teorii funktsii i ikh prilozhenii, Tez. dokl. konferentsii (g. Saratov, 2002 g.), 2002, 42–43

[6] Vodopyanov S. K., “O regulyarnosti otobrazhenii, obratnykh k sobolevskim”, Mat. sb., 203:10 (2012), 3–32 | DOI | Zbl

[7] Vodopyanov S. K., “Dopustimye zameny peremennykh dlya funktsii klassov Soboleva na (sub)rimanovykh mnogoobraziyakh”, Mat. sb., 210:1 (2019), 63–112 | DOI | MR | Zbl

[8] Vodopyanov S. K., “O regulyarnosti otobrazhenii, obratnykh k sobolevskim i teoriya $\mathcal Q_{q,p}$-gomeomorfizmov”, Sib. mat. zh., 61:6 (2020), 1257–1299 | MR | Zbl

[9] Vodopyanov S. K., “Nepreryvnost otobrazhenii klassa Coboleva $W^1_{\nu,\mathrm{loc}}$ s konechnym iskazheniem na gruppakh Karno”, Sib. mat. zh., 64:5 (2023), 912–934 | Zbl

[10] Vodopyanov S. K., Evseev N. A., “Funktsionalnye i analiticheskie svoistva odnogo klassa otobrazhenii kvazikonformnogo analiza na gruppakh Karno”, Sib. mat. zh., 63:2 (2022), 283–315 | Zbl

[11] Vodopyanov S. K., Ukhlov A. D., “Prostranstva Coboleva i $(P,Q)$-kvazikonformnye otobrazheniya grupp Karno”, Sib. mat. zh., 39:4 (1998), 776–795 | MR | Zbl

[12] Gusman M., Differentsirovanie integralov v $\mathbb R^n$, Mir, M., 1978

[13] Kantorovich L. V., Vulikh B. Z., Pinsker A. G., Funktsionalnyi analiz v poluuporyadochennykh prostranstvakh, Gostekhizdat, M.–L., 1950

[14] Mazya V. G., Prostranstva S. L. Soboleva, Leningr. un-t, L., 1985 | MR

[15] Reshetnyak Yu. G., Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982

[16] Reshetnyak Yu. G., “Sobolevskie klassy funktsii so znacheniyami v metricheskom prostranstve”, Sib. mat. zh., 38:3 (1997), 657–675 | MR | Zbl

[17] Reshetnyak Yu. G., “Sobolevskie klassy funktsii so znacheniyami v metricheskom prostranstve. II”, Sib. mat. zh., 45:4 (2004), 855–870 | MR | Zbl

[18] Evans L. K., Gariepi R. F., Teoriya mery i tonkie svoistva funktsii, Nauchnaya kniga, Novosibirsk, 2002

[19] Ball J. M., “Convexity conditions and existence theorems in nonlinear elasticity”, Arch. Ration. Mech. Anal., 63 (1977), 337–403 | DOI | MR | Zbl

[20] Ball J. M., “Global invertibility of Sobolev functions and the interpretation of matter”, Proc. R. Soc. Edinb. Sect. A, 88 (1981), 315–328 | DOI | MR | Zbl

[21] Christodoulou D., “On the geometry and dynamics of crystalline continua”, Ann. Inst. Henri Poincaré, 69:3 (1998), 335–358 | MR | Zbl

[22] Ciarlet P. G., Mathematical Elasticity, v. I, Three-Dimensional Elasticity, North-Holland, Amsterdam, 1988 | MR | Zbl

[23] Folland G. B., Stein E. M., Hardy spaces on homogeneous groups, Princeton Univ. Press, Princeton, 1982 | MR | Zbl

[24] Gromov M., “Carnot—Caratheodory spaces seen from within”, Sub-Riemannian Geometry, Birkhäuser, Basel, 1996, 79–323 | DOI | MR | Zbl

[25] Isangulova D. V., Vodopyanov S. K., “Coercive estimates and integral representation formulas on Carnot groups”, Eurasian Math. J., 1:3 (2010), 58–96 | MR | Zbl

[26] Maione A., Variational convergences for functionals and differential operators depending on vector fields, Diss. kand. nauk. University of Trento, 2020, 145 pp.

[27] Molchanova A., Vodopyanov S., “Injectivity almost everywhere and mappings with finite distortion in nonlinear elasticity”, Calc. Var. Part. Differ. Equ, 59:17 (2019), 2–25 | MR

[28] Pansu P., “Métriques de Carnot—Carathéodory et quasiisométries des espaces symétriques de rang un”, Ann. Math., 129:1 (1989), 1–60 | DOI | MR | Zbl

[29] Ukhlov A. D., Vodopyanov S. K., “Set functions and their applications in the theory of Lebesgue and Sobolev spaces. I”, Sib. Adv. Math., 14:4 (2004), 78–125 | MR | Zbl

[30] Ukhlov A. D., Vodopyanov S. K., “Set functions and their applications in the theory of Lebesgue and Sobolev spaces. II”, Sib. Adv. Math., 15:1 (2005), 1–35 | MR

[31] Vodop'yanov S. K., “$\mathcal P$-Differentiability on Carnot groups in different topologies and related topics”, Proceedings on Analysis and Geometry, Sobolev Institute Press, Novosibirsk, 2000, 603–670 | Zbl

[32] Vodop'yanov S. K., “Geometry of Carnot—Carathéodory spaces and differentiability of mappings”, Contemp. Math., 424, 2007, 247–302 | DOI