@article{CMFD_2024_70_1_a9,
author = {V. M. Savchin},
title = {To geometric aspects of infinite-dimensional dynamical systems},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {163--172},
year = {2024},
volume = {70},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a9/}
}
V. M. Savchin. To geometric aspects of infinite-dimensional dynamical systems. Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 1, pp. 163-172. http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a9/
[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Editorial URSS, M., 2000 | MR
[2] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1986
[3] Kozlov V. V., “Ob integriruemosti uravnenii dinamiki v nepotentsialnom silovom pole”, Usp. mat. nauk, 77:6 (2022), 137–158 | DOI | MR | Zbl
[4] Marchuk G. I., Sopryazhennye uravneniya i analiz slozhnykh sistem, Nauka, M., 1992
[5] Sindzh Dzh. L., Tenzornye metody v dinamike, Inostr. lit., M., 1947
[6] Sobolev S. L., “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser. mat., 18:1 (1954), 3–50 | MR | Zbl
[7] Filippov V. M., Savchin V. M., Shorokhov S. G., “Variatsionnye printsipy dlya nepotentsialnykh operatorov”, Itogi nauki i tekhn. Sovrem. probl. mat., 40, 1992, 3–176
[8] Lovelock D., Rund H., Tensors, differential forms, and variational principles, Willey, New York, 1975 | MR | Zbl
[9] Nashed M. Z., “Differentiability and related properties of nonlinear operators: Some aspects of the role of differentials in nonlinear functional analysis”, Nonlinear Functional Analysis and Applications, Academic Press, New York–Lodon, 1975, 103–310 | MR