To geometric aspects of infinite-dimensional dynamical systems
Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 1, pp. 163-172.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main goal of the work is to construct analogues of Christoffel symbols for infinite-dimensional systems and on this basis to obtain geodesic equations for such systems. These analogies are of particular interest in terms of identifying the relationship between the dynamics of systems with an infinite number of degrees of freedom and Riemannian geometry, as well as geometry defined by the pseudo-Riemannian metric.
Keywords: Christoffel symbols, covariant derivative, geodesic.
@article{CMFD_2024_70_1_a9,
     author = {V. M. Savchin},
     title = {To geometric aspects of infinite-dimensional dynamical systems},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {163--172},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a9/}
}
TY  - JOUR
AU  - V. M. Savchin
TI  - To geometric aspects of infinite-dimensional dynamical systems
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 163
EP  - 172
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a9/
LA  - ru
ID  - CMFD_2024_70_1_a9
ER  - 
%0 Journal Article
%A V. M. Savchin
%T To geometric aspects of infinite-dimensional dynamical systems
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 163-172
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a9/
%G ru
%F CMFD_2024_70_1_a9
V. M. Savchin. To geometric aspects of infinite-dimensional dynamical systems. Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 1, pp. 163-172. http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a9/

[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Editorial URSS, M., 2000 | MR

[2] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1986

[3] Kozlov V. V., “Ob integriruemosti uravnenii dinamiki v nepotentsialnom silovom pole”, Usp. mat. nauk, 77:6 (2022), 137–158 | DOI | MR | Zbl

[4] Marchuk G. I., Sopryazhennye uravneniya i analiz slozhnykh sistem, Nauka, M., 1992

[5] Sindzh Dzh. L., Tenzornye metody v dinamike, Inostr. lit., M., 1947

[6] Sobolev S. L., “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser. mat., 18:1 (1954), 3–50 | MR | Zbl

[7] Filippov V. M., Savchin V. M., Shorokhov S. G., “Variatsionnye printsipy dlya nepotentsialnykh operatorov”, Itogi nauki i tekhn. Sovrem. probl. mat., 40, 1992, 3–176

[8] Lovelock D., Rund H., Tensors, differential forms, and variational principles, Willey, New York, 1975 | MR | Zbl

[9] Nashed M. Z., “Differentiability and related properties of nonlinear operators: Some aspects of the role of differentials in nonlinear functional analysis”, Nonlinear Functional Analysis and Applications, Academic Press, New York–Lodon, 1975, 103–310 | MR