Lower average estimate for the minimum modulus on circles for an entire function of genus zero
Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 1, pp. 150-162.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article was written based on the materials of the joint report of the authors, made by them at the Sixth International Conference “Functional spaces. Differential operators. Problems of mathematical education,” dedicated to the centenary of the birth of Corresponding Member of the Russian Academy of Sciences, Academician of the European Academy of Sciences L. D. Kudryavtsev. For an entire function represented by a canonical product of genus zero with positive roots, the following result is proved. For any $\delta\in(0,1/3]$, the minimum modulus of such a function exceeds on average the maximum of its modulus raised to the power $-1-\delta,$ on any segment whose end ratio is equal to $\exp( 2/\delta).$ The main theorem is illustrated by two examples. The first of them shows that instead of the exponent $-1-\delta$ it is impossible to take $-1.$ The second example demonstrates the impossibility of replacing the value $\exp(2/\delta)$ by the value $28/(15\delta)$ in the theorem for small $\delta.$
Keywords: entire function, minimum modulus, maximum modulus.
@article{CMFD_2024_70_1_a8,
     author = {A. Yu. Popov and V. B. Sherstyukov},
     title = {Lower average estimate for the minimum modulus on circles for an entire function of genus zero},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {150--162},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a8/}
}
TY  - JOUR
AU  - A. Yu. Popov
AU  - V. B. Sherstyukov
TI  - Lower average estimate for the minimum modulus on circles for an entire function of genus zero
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 150
EP  - 162
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a8/
LA  - ru
ID  - CMFD_2024_70_1_a8
ER  - 
%0 Journal Article
%A A. Yu. Popov
%A V. B. Sherstyukov
%T Lower average estimate for the minimum modulus on circles for an entire function of genus zero
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 150-162
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a8/
%G ru
%F CMFD_2024_70_1_a8
A. Yu. Popov; V. B. Sherstyukov. Lower average estimate for the minimum modulus on circles for an entire function of genus zero. Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 1, pp. 150-162. http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a8/

[1] Braichev G. G., Sherstyukov V. B., “Tochnye otsenki asimptoticheskikh kharakteristik rosta tselykh funktsii s nulyami na zadannykh mnozhestvakh”, Fundam. i prikl. mat., 22:1 (2018), 51–97

[2] Goldberg A. A., Ostrovskii I. V., “Novye issledovaniya o roste i raspredelenii znachenii tselykh i meromorfnykh funktsii roda nul”, Usp. mat. nauk, 16:4 (1961), 51–62 | MR

[3] Goldberg A. A., Ostrovskii I. V., Raspredelenie znachenii meromorfnykh funktsii, Nauka, M., 1970 | MR

[4] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[5] Popov A. Yu., “Razvitie teoremy Valirona—Levina o naimenshem vozmozhnom tipe tseloi funktsii s zadannoi verkhnei $\rho$-plotnostyu kornei”, Sovrem. mat. Fundam. napravl., 49 (2013), 132–164

[6] Popov A. Yu., “Novaya otsenka snizu minimuma modulya analiticheskoi funktsii”, Chelyab. fiz.-mat. zh., 4:2 (2019), 155–164 | MR | Zbl

[7] Popov A. Yu., “Otsenka snizu minimuma modulya analiticheskoi funktsii na okruzhnosti cherez otritsatelnuyu stepen ee normy na bolshei okruzhnosti”, Tr. MIAN, 319, 2022, 223–250 | DOI | Zbl

[8] Popov A. Yu., Sherstyukov V. B., “Otsenka snizu minimuma modulya tseloi funktsii roda nul s polozhitelnymi kornyami cherez stepen maksimuma modulya v chastoi posledovatelnosti tochek”, Ufimskii mat. zh., 14:4 (2022), 80–99

[9] Popov A. Yu., Sherstyukov V. B., “Usilenie lemmy Gaisina o minimume modulya chetnykh kanonicheskikh proizvedenii”, Chebyshevskii sb., 24:1 (2023), 127–138 | DOI | MR

[10] Boas R. P. Jr., Entire Functions, Academic Press, New York, 1954 | MR | Zbl

[11] Cartwright M. L., “On the minimum modulus of integral functions”, Proc. Cambridge Philos. Soc., 30 (1934), 412–420 | DOI | MR | Zbl

[12] Hayman W. K., “The minimum modulus of large integral functions”, Proc. London Math. Soc., 2:3 (1952), 469–512 | DOI | MR | Zbl

[13] Hayman W. K., Subharmonic functions, v. 2, Academic Press, London–New York, 1989 | MR | Zbl

[14] Hayman W. K., Lingham E. F., Research problems in function theory, Springer, Cham, 2019 | MR | Zbl

[15] Valiron G., “Sur les fonctions entières d'ordre nul et d'ordre fini et en particulier les fonctions à correspondance régulièr”, Ann. Fac. Sci. Toulouse, 5 (1913), 117–257 | DOI | MR

[16] Wiman A., “Über eine Eigenschaft der ganzen Functionen von der Höhe Null”, Math. Ann., 76 (1915), 197–211 | DOI | MR