Coercive estimates for multilayer degenerate differential operators
Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 1, pp. 99-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the conditions under which a given multilayer differential operator $P(D)$ (polynomial $P(\xi)$) is more powerful than operator $Q(D)$ (polynomial $Q(\xi)$). This is used to obtain estimates of monomials, which, in turn, using the theory of Fourier multipliers, is used to obtain coercive estimates of derivatives of functions through the differential operator $P(D)$ applied to these functions.
Keywords: coercive estimate, comparison of power of differential operators (polynomials), lower-order term of differential operator (polynomial), Newton polyhedron, degenerate (nondegenerate) operator (polynomial), multilayer operator (polynomial).
@article{CMFD_2024_70_1_a6,
     author = {H. G. Kazaryan},
     title = {Coercive estimates for multilayer degenerate differential operators},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {99--120},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a6/}
}
TY  - JOUR
AU  - H. G. Kazaryan
TI  - Coercive estimates for multilayer degenerate differential operators
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 99
EP  - 120
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a6/
LA  - ru
ID  - CMFD_2024_70_1_a6
ER  - 
%0 Journal Article
%A H. G. Kazaryan
%T Coercive estimates for multilayer degenerate differential operators
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 99-120
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a6/
%G ru
%F CMFD_2024_70_1_a6
H. G. Kazaryan. Coercive estimates for multilayer degenerate differential operators. Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 1, pp. 99-120. http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a6/

[1] Besov O. V., “O koertsitivnosti v anizotropnom prostranstve S. L. Soboleva”, Mat. sb., 75:4 (1967), 585–599

[2] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Fizmatlit, M., 1996 | MR

[3] Volevich L. R., Gindikin S. G., “Ob odnom klasse gipoellipticheskikh polinomov”, Mat. sb., 75:3 (1968), 400–416 | Zbl

[4] Gorin E. A., “Ob asimptoticheskikh svoistvakh mnogochlenov i algebraicheskikh funktsii”, Usp. mat. nauk, 16:1 (1961), 91–118 | MR | Zbl

[5] Grushin V. V., “Ob odnom klasse gipoellipticheskikh operatorov”, Mat. sb., 83:3 (1970), 456–473 | MR | Zbl

[6] Ilin V. P., “O neravenstvakh mezhdu normami chastnykh proizvodnykh funktsii mnogikh peremennykh”, Tr. MIAN, 84, 1965, 144–173 | Zbl

[7] Kazaryan G. G., “Ob otsenkakh $L_{p}$-norm proizvodnykh cherez neregulyarnyi nabor differentsialnykh operatorov”, Diff. uravn., 5:5 (1969), 911–921 | Zbl

[8] Kazaryan G. G., “O gipoellipticheskikh polinomakh”, Dokl. AN SSSR, 214:5 (1974), 1018–1019

[9] Kazaryan G. G., “Ob odnom semeistve gipoellipticheskikh polinomov”, Izv. AN Arm. SSR. Mat., 9:3 (1974), 189–211 | Zbl

[10] Kazaryan G. G., “O dobavlenii mladshikh chlenov k differentsialnym polinomam”, Izv. AN Arm. SSR. Mat., 9:6 (1974), 473–485 | MR

[11] Kazaryan G. G., “O sravnenii differentsialnykh operatorov i differentsialnykh operatorakh postoyannoi sily”, Tr. MIAN, 131, 1974, 94–118 | Zbl

[12] Kazaryan G. G., “Otsenki differentsialnykh operatorov i gipoellipticheskie operatory”, Tr. MIAN, 140, 1976, 130–161 | Zbl

[13] Kazaryan G. G., “Sravnenie moschnosti mnogochlenov i ikh gipoelliptichnost”, Tr. MIAN, 150, 1979, 143–159 | Zbl

[14] Kazaryan G. G., “O pochti gipoellipticheskikh mnogochlenakh”, Dokl. RAN, 398:6 (2004), 701–703

[15] Kazaryan G. G., “O pochti gipoellipticheskikh mnogochlenakh, vozrastayuschikh na beskonechnosti”, Izv. NAN Armenii. Mat., 46:6 (2011), 11–30 | MR | Zbl

[16] Kazaryan G. G., Margaryan V. N., “Kriterii gipoelliptichnosti v terminakh moschnosti i sily operatorov”, Tr. MIAN, 150, 1979, 128–142 | Zbl

[17] Kazaryan G. G., Margaryan V. N., “Ob odnom klasse pochti gipoellipticheskikh operatorov”, Izv. NAN Armenii. Mat., 41:6 (2006), 39–56 | MR

[18] Kazaryan G. G., Margaryan V. N., “Ob odnom klasse vyrozhdayuschikhsya gipoellipticheskikh mnogochlenov”, Tr. Mosk. mat. ob-va, 83, no. 1, 2022, 181–217

[19] Kazaryan G. G., Margaryan V. N., Sravnenie trekhsloinykh mnogochlenov mnogikh peremennykh, Sdano v pechat

[20] Lizorkin P. I., “O multiplikatorakh integralov Fure v prostranstvakh $L_{p,\Theta}$”, Tr. MIAN, 91, 1967, 59–81

[21] Mikhailov V. P., “O povedenii na beskonechnosti odnogo klassa mnogochlenov”, Tr. MIAN, 91, 1967, 59–81

[22] Mikhailov V. P., “Pervaya kraevaya zadacha dlya kvaziellipticheskikh i kvaziparabolicheskikh uravnenii”, Tr. MIAN, 91, 1967, 81–99

[23] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 2, Mir, M., 1986

[24] Agmon S., “The coercivness problem for integro-differential forms”, J. Anal. Math., 6 (1958), 183–223 | DOI | MR | Zbl

[25] Aronszajn N., “On coercive integro-differential quadratic forms”, Conference on Partial Differential Equations, Univ. Kansas, Lawrence, 1954, 94–106

[26] Cattabriga L., “Su una classi di polinomi ipoellittici”, Rend. Semin. Mat. Univ. Padova, 36 (1966), 285–309 | MR | Zbl

[27] Chaleyat M., “La condition d'hypoelliptisity d'Hormander”, Asterisque, 2020, 189–202

[28] Friberg J., “Multiquasielliptic polynomials”, Ann. Sc. Norm. Super. Pisa Cl. Sci, 21:2 (1967), 239–260 | MR | Zbl

[29] Ghazaryan H. G., “Addition of lower order terms preserving almost hypoelliptisity of polynomials”, Eurasian Math. J., 4:3 (2013), 32–52 | MR | Zbl

[30] Ghazaryan H. G., Margaryan V. N., “On the comparison of powers of differential operators (polynomials)”, Boll. Unione Mat. Ital., 16:4 (2023), 703–740 | DOI | MR

[31] Khovanskii A. G., “Newton polyhedra (algebra and geometry)”, Am. Math. Soc. Transl, 153:2 (1992), 1–15

[32] Nečas J., “Sur les normes équivalentes dans $W_{p}^{k}(\Omega)$ et sur la coercitivité des formes formellement positives”, Séminaire Equations aux Dérivées partielles, Univ. Montréal, Montréal, 1966, 102–128

[33] Pini B., “Sulla classe di Gevrey della soluzone di certe equazioni ipoellittiche”, Boll. Unione Mat. Ital., 18:3 (1963), 260–269 | MR | Zbl

[34] Pini B., “Osservazioni sulla ipoellittisita”, Boll. Unione Mat. Ital., 18:4 (1963), 420–433 | MR

[35] Schechter M., “Integral inequalities for PDO and functions satisfying general boundary conditions”, Commun. Pure Appl. Math., 12 (1959), 37–66 | DOI | MR | Zbl

[36] Smith K. T., “Inequalities for formali positive integro-differential forms”, Bull. Am. Math. Soc., 67 (1961), 368–370 | DOI | MR | Zbl