Coercive estimates for multilayer degenerate differential operators
Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 1, pp. 99-120

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the conditions under which a given multilayer differential operator $P(D)$ (polynomial $P(\xi)$) is more powerful than operator $Q(D)$ (polynomial $Q(\xi)$). This is used to obtain estimates of monomials, which, in turn, using the theory of Fourier multipliers, is used to obtain coercive estimates of derivatives of functions through the differential operator $P(D)$ applied to these functions.
Keywords: coercive estimate, comparison of power of differential operators (polynomials), lower-order term of differential operator (polynomial), Newton polyhedron, degenerate (nondegenerate) operator (polynomial), multilayer operator (polynomial).
@article{CMFD_2024_70_1_a6,
     author = {H. G. Kazaryan},
     title = {Coercive estimates for multilayer degenerate differential operators},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {99--120},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a6/}
}
TY  - JOUR
AU  - H. G. Kazaryan
TI  - Coercive estimates for multilayer degenerate differential operators
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 99
EP  - 120
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a6/
LA  - ru
ID  - CMFD_2024_70_1_a6
ER  - 
%0 Journal Article
%A H. G. Kazaryan
%T Coercive estimates for multilayer degenerate differential operators
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 99-120
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a6/
%G ru
%F CMFD_2024_70_1_a6
H. G. Kazaryan. Coercive estimates for multilayer degenerate differential operators. Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 1, pp. 99-120. http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a6/