On limit cycles of autonomous systems
Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 1, pp. 77-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of the existence of limit cycles for autonomous systems of differential equations. We present quite elementary considerations that can be useful in discussing qualitative issues that arise in the course of ordinary differential equations. We establish that any simple closed curve defined by the equation $F(x,y)=1$ with a sufficiently general function $F$ is a limit cycle for the corresponding autonomous system on the plane (and even for an infinite number of systems depending on the real parameter). These systems are written out explicitly. We analyze in detail several specific examples. Graphic illustrations are provided.
Keywords: autonomous system on the plane, periodic solutions, positive definite function, stable limit cycle.
@article{CMFD_2024_70_1_a5,
     author = {T. M. Ivanova and A. B. Kostin and A. I. Rubinshtein and V. B. Sherstyukov},
     title = {On limit cycles of autonomous systems},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {77--98},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a5/}
}
TY  - JOUR
AU  - T. M. Ivanova
AU  - A. B. Kostin
AU  - A. I. Rubinshtein
AU  - V. B. Sherstyukov
TI  - On limit cycles of autonomous systems
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 77
EP  - 98
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a5/
LA  - ru
ID  - CMFD_2024_70_1_a5
ER  - 
%0 Journal Article
%A T. M. Ivanova
%A A. B. Kostin
%A A. I. Rubinshtein
%A V. B. Sherstyukov
%T On limit cycles of autonomous systems
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 77-98
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a5/
%G ru
%F CMFD_2024_70_1_a5
T. M. Ivanova; A. B. Kostin; A. I. Rubinshtein; V. B. Sherstyukov. On limit cycles of autonomous systems. Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 1, pp. 77-98. http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a5/

[1] Andronov A. A., Leontovich E. A., Gordon N. I., Maier A. G., Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, M., 1966 | MR

[2] Erugin N. P., Kniga dlya chteniya po obschemu kursu differentsialnykh uravnenii, Nauka i tekhn., Minsk, 1979

[3] Ilyashenko Yu. S., “Attraktory dinamicheskikh sistem i filosofiya obschego polozheniya”, Mat. prosvesch., 12 (2008), 13–22

[4] Kuznetsov A. P., Seliverstova E. S., Trubetskov D. I., Tyuryukina L. V., “Fenomen uravneniya van der Polya”, Izv. vuzov. Prikl. nelin. dinam., 22:4 (2014), 3–42

[5] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, GITTL, M., 1947 | MR

[6] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1982

[7] Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, Gostekhizdat, M.–L., 1947

[8] Rubinshtein A. I., “O nekotorykh dinamicheskikh sistemakh vtorogo poryadka (dopolnenie k standartnomu vtuzovskomu kursu matematiki)”, Mat. obrazovan., 2010, no. 1, 24–30

[9] Skvortsov V. A., Primery metricheskikh prostranstv, MTsNMO, M., 2002

[10] Fedoryuk M. V., Obyknovennye differentsialnye uravneniya, Lan, SPb, 2003

[11] Filippov A. F., Vvedenie v teoriyu differentsialnykh uravnenii, KomKniga, M., 2007