Voir la notice du chapitre de livre
@article{CMFD_2024_70_1_a3,
author = {L. V. Gargyants and O. S. Rozanova and M. K. Turzynsky},
title = {The {Riemann} problem for the main model cases of the {Euler{\textemdash}Poisson} equations},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {38--52},
year = {2024},
volume = {70},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a3/}
}
TY - JOUR AU - L. V. Gargyants AU - O. S. Rozanova AU - M. K. Turzynsky TI - The Riemann problem for the main model cases of the Euler—Poisson equations JO - Contemporary Mathematics. Fundamental Directions PY - 2024 SP - 38 EP - 52 VL - 70 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a3/ LA - ru ID - CMFD_2024_70_1_a3 ER -
%0 Journal Article %A L. V. Gargyants %A O. S. Rozanova %A M. K. Turzynsky %T The Riemann problem for the main model cases of the Euler—Poisson equations %J Contemporary Mathematics. Fundamental Directions %D 2024 %P 38-52 %V 70 %N 1 %U http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a3/ %G ru %F CMFD_2024_70_1_a3
L. V. Gargyants; O. S. Rozanova; M. K. Turzynsky. The Riemann problem for the main model cases of the Euler—Poisson equations. Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 1, pp. 38-52. http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a3/
[1] Gurevich A. V., Zybin K. P., “Nedissipativnaya gravitatsionnaya turbulentnost”, Zh. eksperiment. i teor. fiz., 94:1 (1988), 3–25 | MR
[2] Kochin N. E., Vektornoe ischislenie i nachala tenzornogo analiza, Nauka, M., 1965 | MR
[3] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR
[4] Chizhonkov E. V., Matematicheskie aspekty modelirovaniya kolebanii i kilvaternykh voln v plazme, Fizmatlit, M., 2018
[5] Shelkovich V. M., “Singulyarnye resheniya sistem zakonov sokhraneniya tipa $\delta$ i $\delta'$-udarnykh voln i protsessy perenosa i kontsentratsii”, Usp. mat. nauk, 63:3 (2008), 73–146 | DOI | MR | Zbl
[6] Brunelli J. C., Das A., “On an integrable hierarchy derived from the isentropic gas dynamics”, J. Math. Phys., 45:7 (2004), 2633–2645 | DOI | MR | Zbl
[7] Chae D., Tadmor E., “On the finite time blow-up of the Euler–Poisson equations in ${\mathbb R}^n$”, Commun. Math. Sci., 6:3 (2008), 785–789 | DOI | MR | Zbl
[8] Dafermos C. M., Hyperbolic conservation laws in continuum physics, Springer, Berlin–Heidelberg, 2016 | MR | Zbl
[9] Engelberg S., Liu H., Tadmor E., “Critical thresholds in Euler–Poisson equations”, Indiana Univ. Math. J., 50:1 (2001), 109–157 | DOI | MR
[10] Gao B., Tian K., Liu Q. P., Feng L., “Conservation laws of the generalized Riemann equations”, J. Nonlinear Math. Phys., 25:1 (2018), 122–135 | DOI | MR | Zbl
[11] Huang F., Wang Zh., “Well posedness for pressureless flow”, Commun. Math. Phys., 222:1 (2001), 117–146 | DOI | MR | Zbl
[12] Hunter J. K., Saxton R., “Dynamics of director fields”, SIAM J. Appl. Math., 51:6 (1991), 1498–1521 | DOI | MR | Zbl
[13] Pavlov M. V., “The Gurevich–Zybin system”, J. Phys. A: Math. Gen., 38:17 (2005), 3823–3840 | DOI | MR
[14] Popowicz Z., Prykarpatski A. K., “The non-polynomial conservation laws and integrability analysis of generalized Riemann type hydrodynamical equations”, Nonlinearity, 23:10 (2010), 2517–2537 | DOI | MR | Zbl
[15] Rozanova O. S., “On the behavior of multidimensional radially symmetric solutions of the repulsive Euler–Poisson equations”, Phys. D: Nonlinear Phenom., 443 (2022), 133578 | DOI | MR
[16] Rozanova O. S., “The Riemann problem for equations of a cold plasma”, J. Math. Anal. Appl., 527:1 (2023), 127400 | DOI | MR | Zbl
[17] Rozanova O. S., Turzynsky M. K., “On the properties of affine solutions of cold plasma equations”, Commun. Math. Sci., 22:1 (2024), 215–226 | DOI | MR
[18] Schäfer T., Wayne C. E., “Propagation of ultra-short optical pulses in cubic nonlinear media”, Phys. D.: Nonlinear Phenom., 196:1 (2004), 90–105 | DOI | MR | Zbl
[19] Tan C., “Eulerian dynamics in multidimensions with radial symmetry”, SIAM J. Math. Anal., 53:3 (2021), 3040–3071 | DOI | MR | Zbl
[20] Wei D., Tadmor E., Bae H., “Critical thresholds in multi-dimensional Euler–Poisson equations with radial symmetry”, Commun. Math. Sci., 10:1 (2012), 75–86 | DOI | MR | Zbl
[21] Wei L., “Wave breaking, global existence and persistent decay for the Gurevich–Zybin system”, J. Math. Fluid Mech., 22:4 (2020), 1–14 | DOI | MR
[22] Wei L., Wang Y., “The Cauchy problem for a generalized Riemann-type hydrodynamical equation”, J. Math. Phys., 62:4 (2021), 041502 | DOI | MR | Zbl
[23] Xia S., “Existence of a weak solution to a generalized Riemann-type hydrodynamical equation”, Appl. Anal., 102:18 (2023), 4997–5007 | DOI | MR