On discrete models of Boltzmann-type kinetic equations
Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 1, pp. 15-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

The known nonlinear kinetic equations, in particular, the wave kinetic equation and the quantum Nordheim–Uehling–Uhlenbeck equations are considered as a natural generalization of the classical spatially homogeneous Boltzmann equation. To this goal we introduce the general Boltzmann-type kinetic equation that depends on a function of four real variables $F(x,y; v,w)$. The function $ F $ is assumed to satisfy certain simple relations. The main properties of this kinetic equation are studied. It is shown that the above mentioned specific kinetic equations correspond to different polynomial forms of the function $ F $. Then the problem of discretization of the general Boltzmann-type kinetic equation is considered on the basis of ideas similar to those used for construction of discrete velocity models of the Boltzmann equation. The main attention is paid to discrete models of the wave kinetic equation. It is shown that such models have a monotone functional similarly to the Boltzmann $ H $-function. The theorem of existence, uniqueness and convergence to equilibrium of solutions to the Cauchy problem with any positive initial conditions is formulated and discussed. The differences in long time behaviour between solutions of the wave kinetic equation and solutions of its discrete models are also briefly discussed.
Keywords: Boltzmann equation, wave kinetic equation, $H$-theorem, distribution function, Lyapunov function, discrete kinetic models.
@article{CMFD_2024_70_1_a1,
     author = {A. V. Bobylev},
     title = {On discrete models of {Boltzmann-type} kinetic equations},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {15--24},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a1/}
}
TY  - JOUR
AU  - A. V. Bobylev
TI  - On discrete models of Boltzmann-type kinetic equations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 15
EP  - 24
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a1/
LA  - ru
ID  - CMFD_2024_70_1_a1
ER  - 
%0 Journal Article
%A A. V. Bobylev
%T On discrete models of Boltzmann-type kinetic equations
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 15-24
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a1/
%G ru
%F CMFD_2024_70_1_a1
A. V. Bobylev. On discrete models of Boltzmann-type kinetic equations. Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 1, pp. 15-24. http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a1/

[1] Bobylev A. V., “Ob odnom svoistve diskretnykh modelei volnovogo kineticheskogo uravneniya”, Usp. mat. nauk, 78:5 (2023), 179–180 | DOI | MR

[2] Bobylev A. V., Kuksin S. B., “Uravnenie Boltsmana i volnovye kineticheskie uravneniya”, Preprinty IPM im. M. V. Keldysha, 2023, 031

[3] Tikhonov A. N., Vasileva A. B., Sveshnikov A. G., Differentsialnye uravneniya, Nauka, M., 1980

[4] Arkeryd L., “On low temperature kinetic theory: spin diffusion, Bose–Einstein condensates, anyons”, J. Stat. Phys., 150 (2013), 1063–1079 | DOI | MR | Zbl

[5] Bobylev A. V., Boltzmann-type kinetic equation and discrete models, 2023, arXiv: 2312.16094 [math-ph]

[6] Bobylev A. V., Palczewski A., Schneider J., “On approximation of the Boltzmann equation by discrete velocity models”, C. R. Acad. Sci. Ser. I. Math., 320:5 (1995), 639–644 | MR | Zbl

[7] Boltzmann L., “Weiter Studien über das Wärmegleichgewicht unte Gasmolekülen”, Wien. Akad. Sitzungsber, 66 (1872), 275–370

[8] Broadwell J. E., “Study of rarefied shear flow by the discrete velocity method”, J. Fluid Mech., 19:3 (1964), 401–414 | DOI | MR | Zbl

[9] Cabannes H., The Discrete Boltzmann Equation: Theory and Applications, Univ. California, Berkeley, 1980

[10] Carleman T., Problèmes Mathématiques dans la Théorie Cinétique des Gaz, Almqvist and Wiksell, Uppsala, 1957 | MR

[11] Cercignani C., The Boltzmann Equation and Its Applications, Springer, New York, 1988 | MR | Zbl

[12] Dymov A., Kuksin S., “Formal expansions in stochastic model for wave turbulence 1: Kinetic limit”, Commun. Math. Phys., 382 (2021), 951–1014 | DOI | MR | Zbl

[13] Escobedo M., Velazquez J. J., On the theory of weak turbulence for the nonlinear Schrödinger equation, Mem. Am. Math. Soc., 238, 2015 | MR

[14] Nordheim L. W., “On the kinetic method in the new statistics and application in the electron theory of conductivity”, Proc. R. Soc. London Ser. A, 119 (1928), 689–698 | DOI

[15] Uehling E. A., Uhlenbeck G. E., “Transport phenomena in Einstein–Bose and Fermi–Dirac gases”, Phys. Rev., 43:7 (1933), 552–561 | DOI | Zbl