Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2024_70_1_a1, author = {A. V. Bobylev}, title = {On discrete models of {Boltzmann-type} kinetic equations}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {15--24}, publisher = {mathdoc}, volume = {70}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a1/} }
A. V. Bobylev. On discrete models of Boltzmann-type kinetic equations. Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 1, pp. 15-24. http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a1/
[1] Bobylev A. V., “Ob odnom svoistve diskretnykh modelei volnovogo kineticheskogo uravneniya”, Usp. mat. nauk, 78:5 (2023), 179–180 | DOI | MR
[2] Bobylev A. V., Kuksin S. B., “Uravnenie Boltsmana i volnovye kineticheskie uravneniya”, Preprinty IPM im. M. V. Keldysha, 2023, 031
[3] Tikhonov A. N., Vasileva A. B., Sveshnikov A. G., Differentsialnye uravneniya, Nauka, M., 1980
[4] Arkeryd L., “On low temperature kinetic theory: spin diffusion, Bose–Einstein condensates, anyons”, J. Stat. Phys., 150 (2013), 1063–1079 | DOI | MR | Zbl
[5] Bobylev A. V., Boltzmann-type kinetic equation and discrete models, 2023, arXiv: 2312.16094 [math-ph]
[6] Bobylev A. V., Palczewski A., Schneider J., “On approximation of the Boltzmann equation by discrete velocity models”, C. R. Acad. Sci. Ser. I. Math., 320:5 (1995), 639–644 | MR | Zbl
[7] Boltzmann L., “Weiter Studien über das Wärmegleichgewicht unte Gasmolekülen”, Wien. Akad. Sitzungsber, 66 (1872), 275–370
[8] Broadwell J. E., “Study of rarefied shear flow by the discrete velocity method”, J. Fluid Mech., 19:3 (1964), 401–414 | DOI | MR | Zbl
[9] Cabannes H., The Discrete Boltzmann Equation: Theory and Applications, Univ. California, Berkeley, 1980
[10] Carleman T., Problèmes Mathématiques dans la Théorie Cinétique des Gaz, Almqvist and Wiksell, Uppsala, 1957 | MR
[11] Cercignani C., The Boltzmann Equation and Its Applications, Springer, New York, 1988 | MR | Zbl
[12] Dymov A., Kuksin S., “Formal expansions in stochastic model for wave turbulence 1: Kinetic limit”, Commun. Math. Phys., 382 (2021), 951–1014 | DOI | MR | Zbl
[13] Escobedo M., Velazquez J. J., On the theory of weak turbulence for the nonlinear Schrödinger equation, Mem. Am. Math. Soc., 238, 2015 | MR
[14] Nordheim L. W., “On the kinetic method in the new statistics and application in the electron theory of conductivity”, Proc. R. Soc. London Ser. A, 119 (1928), 689–698 | DOI
[15] Uehling E. A., Uhlenbeck G. E., “Transport phenomena in Einstein–Bose and Fermi–Dirac gases”, Phys. Rev., 43:7 (1933), 552–561 | DOI | Zbl