Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2024_70_1_a0, author = {Yu. A. Alkhutov and G. A. Chechkin}, title = {On the {Boyarsky--Meyers} estimate for the solution of the {Dirichlet} problem for a second-order linear elliptic equation with drift}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {1--14}, publisher = {mathdoc}, volume = {70}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a0/} }
TY - JOUR AU - Yu. A. Alkhutov AU - G. A. Chechkin TI - On the Boyarsky--Meyers estimate for the solution of the Dirichlet problem for a second-order linear elliptic equation with drift JO - Contemporary Mathematics. Fundamental Directions PY - 2024 SP - 1 EP - 14 VL - 70 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a0/ LA - ru ID - CMFD_2024_70_1_a0 ER -
%0 Journal Article %A Yu. A. Alkhutov %A G. A. Chechkin %T On the Boyarsky--Meyers estimate for the solution of the Dirichlet problem for a second-order linear elliptic equation with drift %J Contemporary Mathematics. Fundamental Directions %D 2024 %P 1-14 %V 70 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a0/ %G ru %F CMFD_2024_70_1_a0
Yu. A. Alkhutov; G. A. Chechkin. On the Boyarsky--Meyers estimate for the solution of the Dirichlet problem for a second-order linear elliptic equation with drift. Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a0/
[1] Boyarskii B. V., “Obobschennye resheniya sistemy differentsialnykh uravnenii pervogo poryadka ellipticheskogo tipa s razryvnymi koeffitsientami”, Mat. sb., 43:4 (1957), 451–503
[2] Gilbarg D., Trudinger N. S., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR
[3] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR
[4] Chechkin G. A., Chechkina T. P., “Otsenka Boyarskogo—Meiersa dlya divergentnykh ellipticheskikh uravnenii vtorogo poryadka. Dva prostranstvennykh primera”, Probl. mat. analiza, 119 (2022), 107–116 | Zbl
[5] Chechkina A. G., “O zadache Zaremby dlya $p$-ellipticheskogo uravneniya”, Mat. sb., 214:9 (2023), 144–160 | DOI | MR
[6] Acerbi E., Mingione G., “Gradient estimates for the $p(x)$-Laplacian system”, J. Reine Angew. Math., 584 (2005), 117–148 | DOI | MR | Zbl
[7] Alkhutov Yu. A., Chechkin G. A., “Increased integrability of the gradient of the solution to the Zaremba problem for the Poisson equation”, Dokl. Math., 103:2 (2021), 69–71 | DOI | MR | Zbl
[8] Alkhutov Yu. A., Chechkin G. A., “The Meyer's estimate of solutions to Zaremba problem for second-order elliptic equations in divergent form”, C. R. Mécanique, 349:2 (2021), 299–304 | DOI
[9] Alkhutov Yu. A., Chechkin G. A., Maz'ya V. G., “On the Bojarski–Meyers estimate of a solution to the Zaremba problem”, Arch. Ration. Mech. Anal., 245:2 (2022), 1197–1211 | DOI | MR | Zbl
[10] Chechkin G. A., “The Meyers estimates for domains perforated along the boundary”, Mathematics, 9:23 (2021) | DOI | Zbl
[11] Cimatti G., Prodi G., “Existence results for a nonlinear elliptic system modelling a temperature dependent electrical resistor”, Ann. Mat. Pura Appl., 63 (1988), 227–236 | DOI | MR
[12] Diening L., Schwarzsacher S., “Global gradient estimates for the $p(\cdot)$-Laplacian”, Nonlinear Anal., 106 (2014), 70–85 | DOI | MR | Zbl
[13] Gehring F. W., “The $L_p$-integrability of the partial derivatives of a quasiconformal mapping”, Acta Math., 130 (1973), 265–277 | DOI | MR | Zbl
[14] Giaquinta M., Modica G., “Regularity results for some classes of higher order nonlinear elliptic systems”, J. Reine Angew. Math., 311/312 (1979), 145–169 | MR | Zbl
[15] Howison S. D., Rodriges J. F., Shillor M., “Stationary solutions to the thermistor problem”, J. Math. Anal. Appl., 174 (1993), 573–588 | DOI | MR | Zbl
[16] Lax P. D., Milgram A., “Parabolic equations”, Contributions to the Theory of Partial Differential Equations, Princeton Univ. Press, Princeton, 1954, 167–190 | MR
[17] Meyers N. G., “An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations”, Ann. Sc. Norm. Super. Pisa Cl. Sci., 17:3 (1963), 189–206 | MR | Zbl
[18] Skrypnik I. V., Methods for Analysis of Nonlinear Elliptic Boundary Value Problems, AMS, Providence, 1994 | MR | Zbl
[19] Zhikov V. V., “On some variational problems”, Russ. J. Math. Phys., 5:1 (1997), 105–116 | MR | Zbl