On the Boyarsky–Meyers estimate for the solution of the Dirichlet problem for a second-order linear elliptic equation with drift
Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 1, pp. 1-14
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We establish the increased integrability of the gradient of the solution to the Dirichlet problem for the Laplace operator with lower terms and prove the unique solvability of this problem.
Keywords: Zaremba problem, Meyers estimates, embedding theorems, increased integrability.
@article{CMFD_2024_70_1_a0,
     author = {Yu. A. Alkhutov and G. A. Chechkin},
     title = {On the {Boyarsky{\textendash}Meyers} estimate for the solution of the {Dirichlet} problem for a second-order linear elliptic equation with drift},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {1--14},
     year = {2024},
     volume = {70},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a0/}
}
TY  - JOUR
AU  - Yu. A. Alkhutov
AU  - G. A. Chechkin
TI  - On the Boyarsky–Meyers estimate for the solution of the Dirichlet problem for a second-order linear elliptic equation with drift
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 1
EP  - 14
VL  - 70
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a0/
LA  - ru
ID  - CMFD_2024_70_1_a0
ER  - 
%0 Journal Article
%A Yu. A. Alkhutov
%A G. A. Chechkin
%T On the Boyarsky–Meyers estimate for the solution of the Dirichlet problem for a second-order linear elliptic equation with drift
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 1-14
%V 70
%N 1
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a0/
%G ru
%F CMFD_2024_70_1_a0
Yu. A. Alkhutov; G. A. Chechkin. On the Boyarsky–Meyers estimate for the solution of the Dirichlet problem for a second-order linear elliptic equation with drift. Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a0/

[1] Boyarskii B. V., “Obobschennye resheniya sistemy differentsialnykh uravnenii pervogo poryadka ellipticheskogo tipa s razryvnymi koeffitsientami”, Mat. sb., 43:4 (1957), 451–503

[2] Gilbarg D., Trudinger N. S., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR

[3] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[4] Chechkin G. A., Chechkina T. P., “Otsenka Boyarskogo—Meiersa dlya divergentnykh ellipticheskikh uravnenii vtorogo poryadka. Dva prostranstvennykh primera”, Probl. mat. analiza, 119 (2022), 107–116 | Zbl

[5] Chechkina A. G., “O zadache Zaremby dlya $p$-ellipticheskogo uravneniya”, Mat. sb., 214:9 (2023), 144–160 | DOI | MR

[6] Acerbi E., Mingione G., “Gradient estimates for the $p(x)$-Laplacian system”, J. Reine Angew. Math., 584 (2005), 117–148 | DOI | MR | Zbl

[7] Alkhutov Yu. A., Chechkin G. A., “Increased integrability of the gradient of the solution to the Zaremba problem for the Poisson equation”, Dokl. Math., 103:2 (2021), 69–71 | DOI | MR | Zbl

[8] Alkhutov Yu. A., Chechkin G. A., “The Meyer's estimate of solutions to Zaremba problem for second-order elliptic equations in divergent form”, C. R. Mécanique, 349:2 (2021), 299–304 | DOI

[9] Alkhutov Yu. A., Chechkin G. A., Maz'ya V. G., “On the Bojarski–Meyers estimate of a solution to the Zaremba problem”, Arch. Ration. Mech. Anal., 245:2 (2022), 1197–1211 | DOI | MR | Zbl

[10] Chechkin G. A., “The Meyers estimates for domains perforated along the boundary”, Mathematics, 9:23 (2021) | DOI | Zbl

[11] Cimatti G., Prodi G., “Existence results for a nonlinear elliptic system modelling a temperature dependent electrical resistor”, Ann. Mat. Pura Appl., 63 (1988), 227–236 | DOI | MR

[12] Diening L., Schwarzsacher S., “Global gradient estimates for the $p(\cdot)$-Laplacian”, Nonlinear Anal., 106 (2014), 70–85 | DOI | MR | Zbl

[13] Gehring F. W., “The $L_p$-integrability of the partial derivatives of a quasiconformal mapping”, Acta Math., 130 (1973), 265–277 | DOI | MR | Zbl

[14] Giaquinta M., Modica G., “Regularity results for some classes of higher order nonlinear elliptic systems”, J. Reine Angew. Math., 311/312 (1979), 145–169 | MR | Zbl

[15] Howison S. D., Rodriges J. F., Shillor M., “Stationary solutions to the thermistor problem”, J. Math. Anal. Appl., 174 (1993), 573–588 | DOI | MR | Zbl

[16] Lax P. D., Milgram A., “Parabolic equations”, Contributions to the Theory of Partial Differential Equations, Princeton Univ. Press, Princeton, 1954, 167–190 | MR

[17] Meyers N. G., “An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations”, Ann. Sc. Norm. Super. Pisa Cl. Sci., 17:3 (1963), 189–206 | MR | Zbl

[18] Skrypnik I. V., Methods for Analysis of Nonlinear Elliptic Boundary Value Problems, AMS, Providence, 1994 | MR | Zbl

[19] Zhikov V. V., “On some variational problems”, Russ. J. Math. Phys., 5:1 (1997), 105–116 | MR | Zbl