On the structure of weak solutions of the Riemann problem for a degenerate nonlinear diffusion equation
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 4, pp. 676-684
Voir la notice de l'article provenant de la source Math-Net.Ru
An explicit form of weak solutions to the Riemann problem for a degenerate nonlinear parabolic equation with a piecewise constant diffusion coefficient is found. It is shown that the lines of phase transitions (free boundaries) correspond to the minimum point of some strictly convex and coercive function of a finite number of variables. A similar result is true for Stefan's problem. In the limit, when the number of phases tends to infinity, there arises a variational formulation of self-similar solutions to the equation with an arbitrary nonnegative diffusion function.
Keywords:
degenerate nonlinear parabolic equation, Riemann problem, Stefan problem, weak solution, self-similar solution.
Mots-clés : phase transition
Mots-clés : phase transition
@article{CMFD_2023_69_4_a7,
author = {E. Yu. Panov},
title = {On the structure of weak solutions of the {Riemann} problem for a degenerate nonlinear diffusion equation},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {676--684},
publisher = {mathdoc},
volume = {69},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a7/}
}
TY - JOUR AU - E. Yu. Panov TI - On the structure of weak solutions of the Riemann problem for a degenerate nonlinear diffusion equation JO - Contemporary Mathematics. Fundamental Directions PY - 2023 SP - 676 EP - 684 VL - 69 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a7/ LA - ru ID - CMFD_2023_69_4_a7 ER -
%0 Journal Article %A E. Yu. Panov %T On the structure of weak solutions of the Riemann problem for a degenerate nonlinear diffusion equation %J Contemporary Mathematics. Fundamental Directions %D 2023 %P 676-684 %V 69 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a7/ %G ru %F CMFD_2023_69_4_a7
E. Yu. Panov. On the structure of weak solutions of the Riemann problem for a degenerate nonlinear diffusion equation. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 4, pp. 676-684. http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a7/