On the structure of weak solutions of the Riemann problem for a degenerate nonlinear diffusion equation
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 4, pp. 676-684.

Voir la notice de l'article provenant de la source Math-Net.Ru

An explicit form of weak solutions to the Riemann problem for a degenerate nonlinear parabolic equation with a piecewise constant diffusion coefficient is found. It is shown that the lines of phase transitions (free boundaries) correspond to the minimum point of some strictly convex and coercive function of a finite number of variables. A similar result is true for Stefan's problem. In the limit, when the number of phases tends to infinity, there arises a variational formulation of self-similar solutions to the equation with an arbitrary nonnegative diffusion function.
Keywords: degenerate nonlinear parabolic equation, Riemann problem, Stefan problem, weak solution, self-similar solution.
Mots-clés : phase transition
@article{CMFD_2023_69_4_a7,
     author = {E. Yu. Panov},
     title = {On the structure of weak solutions of the {Riemann} problem for a degenerate nonlinear diffusion equation},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {676--684},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a7/}
}
TY  - JOUR
AU  - E. Yu. Panov
TI  - On the structure of weak solutions of the Riemann problem for a degenerate nonlinear diffusion equation
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 676
EP  - 684
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a7/
LA  - ru
ID  - CMFD_2023_69_4_a7
ER  - 
%0 Journal Article
%A E. Yu. Panov
%T On the structure of weak solutions of the Riemann problem for a degenerate nonlinear diffusion equation
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 676-684
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a7/
%G ru
%F CMFD_2023_69_4_a7
E. Yu. Panov. On the structure of weak solutions of the Riemann problem for a degenerate nonlinear diffusion equation. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 4, pp. 676-684. http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a7/

[1] Karslou G., Eger Dzh., Teploprovodnost tverdykh tel, Nauka, M., 1964

[2] Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Mat. sb, 81:2 (1970), 228–255 | Zbl

[3] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[4] Carrillo J., “Entropy solutions for nonlinear degenerate problems”, Arch. Ration. Mech. Anal., 147 (1999), 269–361 | DOI | MR | Zbl

[5] Panov E. Yu., “On weak completeness of the set of entropy solutions to a degenerate non-linear parabolic equation”, SIAM J. Math. Anal., 44:1 (2012), 513–535 | DOI | MR | Zbl

[6] Panov E. Yu., “Solutions of an ill-posed Stefan problem”, J. Math. Sci. (N. Y.), 274:4 (2023), 534–543 | DOI | MR