Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2023_69_4_a7, author = {E. Yu. Panov}, title = {On the structure of weak solutions of the {Riemann} problem for a degenerate nonlinear diffusion equation}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {676--684}, publisher = {mathdoc}, volume = {69}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a7/} }
TY - JOUR AU - E. Yu. Panov TI - On the structure of weak solutions of the Riemann problem for a degenerate nonlinear diffusion equation JO - Contemporary Mathematics. Fundamental Directions PY - 2023 SP - 676 EP - 684 VL - 69 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a7/ LA - ru ID - CMFD_2023_69_4_a7 ER -
%0 Journal Article %A E. Yu. Panov %T On the structure of weak solutions of the Riemann problem for a degenerate nonlinear diffusion equation %J Contemporary Mathematics. Fundamental Directions %D 2023 %P 676-684 %V 69 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a7/ %G ru %F CMFD_2023_69_4_a7
E. Yu. Panov. On the structure of weak solutions of the Riemann problem for a degenerate nonlinear diffusion equation. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 4, pp. 676-684. http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a7/
[1] Karslou G., Eger Dzh., Teploprovodnost tverdykh tel, Nauka, M., 1964
[2] Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Mat. sb, 81:2 (1970), 228–255 | Zbl
[3] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR
[4] Carrillo J., “Entropy solutions for nonlinear degenerate problems”, Arch. Ration. Mech. Anal., 147 (1999), 269–361 | DOI | MR | Zbl
[5] Panov E. Yu., “On weak completeness of the set of entropy solutions to a degenerate non-linear parabolic equation”, SIAM J. Math. Anal., 44:1 (2012), 513–535 | DOI | MR | Zbl
[6] Panov E. Yu., “Solutions of an ill-posed Stefan problem”, J. Math. Sci. (N. Y.), 274:4 (2023), 534–543 | DOI | MR