Boundary-value problems for differential-difference equations with finite and infinite orbits of boundaries
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 4, pp. 664-675.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider boundary-value problems for differential-difference equations containing incommensurable shifts of arguments in the higher-order terms. We show that for the case when the orbits of the domain boundary generated by the set of shifts of the difference operator are finite, the original problem is similar to the boundary-value problem for differential-difference equations with integer shifts of arguments. The case of an infinite boundary orbit is also studied.
Keywords: differential-difference equation, boundary-value problem, incommensurable shifts of arguments.
@article{CMFD_2023_69_4_a6,
     author = {E. P. Ivanova},
     title = {Boundary-value problems for differential-difference equations with finite and infinite orbits of boundaries},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {664--675},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a6/}
}
TY  - JOUR
AU  - E. P. Ivanova
TI  - Boundary-value problems for differential-difference equations with finite and infinite orbits of boundaries
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 664
EP  - 675
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a6/
LA  - ru
ID  - CMFD_2023_69_4_a6
ER  - 
%0 Journal Article
%A E. P. Ivanova
%T Boundary-value problems for differential-difference equations with finite and infinite orbits of boundaries
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 664-675
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a6/
%G ru
%F CMFD_2023_69_4_a6
E. P. Ivanova. Boundary-value problems for differential-difference equations with finite and infinite orbits of boundaries. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 4, pp. 664-675. http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a6/

[1] Rossovskii L. E., “Ellipticheskie funktsionalno-differentsialnye uravneniya so szhatiem i rastyazheniem argumentov neizvestnoi funktsii”, Sovrem. mat. Fundam. napravl., 54, no. 2, 2014, 3–138

[2] Skubachevskii A. L., “Kraevye zadachi dlya ellipticheskikh differentsialno-raznostnykh uravnenii i ikh prilozheniya”, Usp. mat. nauk, 32:2 (2016), 261–278

[3] Ivanova E. P., “On coercivity of differential-difference equations with incommensurable translations of arguments”, J. Math. Sci. (N. Y.), 239:6 (2019), 802–816 | DOI | MR | Zbl

[4] Ivanova E. P., “On smooth solutions of differential-difference equations with incommensurable shifts of arguments”, Math. Notes, 105:1 (2019), 140–144 | DOI | MR | Zbl

[5] Ivanova E. P., “Boundary-value problems for differential-difference equations with incommensurable shifts of arguments reducible to nonlocal problems”, J. Math. Sci. (N. Y.), 265:5 (2022), 781–790 | DOI | MR | Zbl

[6] Rossovskii L. E., “Elliptic functional differential equations with incommensurable contractions”, Math. Model. Nat. Phenom., 12 (2017), 226–239 | DOI | MR | Zbl

[7] Rossovskii L. E., Tovsultanov A. A., “Elliptic functional differential equations with affine transformations”, J. Math. Anal. Appl., 480 (2019), 123403 | DOI | MR | Zbl

[8] Skubachevskii A. L., Elliptic functional differential equations and aplications, Birkhauser, Basel—Boston—Berlin, 1997 | MR