The existence problem of feedback control for one fractional Voigt model
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 4, pp. 621-642.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the feedback control problem for a mathematical model that describes the motion of a viscoelastic fluid with memory along velocity field trajectories. We prove the existence of an optimal control that gives a minimum to a given bounded and semi-continuous from below quality functional. The proof uses the approximation-topological approach, the theory of regular Lagrangian flows, and the theory of topological degree for multivalued vector fields.
Mots-clés : fractional Voigt model
Keywords: viscoelastic fluid, motion with memory, optimal control, approximation-topological approach, regular Lagrangian flow, topological degree, multivalued vector field.
@article{CMFD_2023_69_4_a4,
     author = {A. V. Zvyagin and E. I. Kostenko},
     title = {The existence problem of feedback control for one fractional {Voigt} model},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {621--642},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a4/}
}
TY  - JOUR
AU  - A. V. Zvyagin
AU  - E. I. Kostenko
TI  - The existence problem of feedback control for one fractional Voigt model
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 621
EP  - 642
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a4/
LA  - ru
ID  - CMFD_2023_69_4_a4
ER  - 
%0 Journal Article
%A A. V. Zvyagin
%A E. I. Kostenko
%T The existence problem of feedback control for one fractional Voigt model
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 621-642
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a4/
%G ru
%F CMFD_2023_69_4_a4
A. V. Zvyagin; E. I. Kostenko. The existence problem of feedback control for one fractional Voigt model. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 4, pp. 621-642. http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a4/

[1] Astarita Dzh., Maruchchi Dzh., Osnovy gidrodinamiki nenyutonovskikh zhidkostei, Mir, M., 1979

[2] Akhmerov R. R., Kamenskii M. I., Potapov A. S., Rodkina A. E., Sadovskii B. N., Mery nekompaktnosti i uplotnyayuschie operatory, Nauka, Novosibirsk, 1986 | MR

[3] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, Librokom, M., 2011 | MR

[4] Dmitrienko V. T., Zvyagin V. G., “Gomotopicheskaya klassifikatsiya odnogo klassa nepreryvnykh otobrazhenii”, Mat. zametki, 31:5 (1982), 801–812 | MR | Zbl

[5] Zvyagin V. G., “Approksimatsionno-topologicheskii podkhod k issledovaniyu matematicheskikh zadach gidrodinamiki”, Sovrem. mat. Fundam. napravl., 46, 2012, 92–119

[6] Zvyagin A. V., “Zadacha optimalnogo upravleniya dlya statsionarnoi modeli slabo kontsentrirovannykh vodnykh rastvorov polimerov”, Diff. uravn., 49:2 (2013), 245–249 | Zbl

[7] Zvyagin A. V., “Optimalnoe upravlenie s obratnoi svyazyu dlya alfa-modeli Lere i alfa-modeli Nave—Stoksa”, Dokl. RAN, 486:5 (2019), 527–530 | DOI | Zbl

[8] Zvyagin A. V., “O slaboi razreshimosti i skhodimosti reshenii drobnoi alfa-modeli Foigta dvizheniya vyazkouprugoi sredy”, Usp. mat. nauk, 74:3 (2019), 189–190 | DOI | MR | Zbl

[9] Zvyagin A. V., “Issledovanie slaboi razreshimosti drobnoi alfa-modeli Foigta”, Izv. RAN. Ser. mat., 85:1 (2021), 66–97 | DOI | MR | Zbl

[10] Zvyagin V. G., Dmitrienko V. T., “O slabykh resheniyakh regulyarizovannoi modeli vyazkouprugoi zhidkosti”, Diff. uravn., 38:12 (2002), 1633–1645 | MR | Zbl

[11] Zvyagin V. G., Zvyagin A. V., Turbin M. V., “Optimalnoe upravlenie s obratnoi svyazyu dlya modeli Bingama s periodicheskimi usloviyami po prostranstvennym peremennym”, Zap. nauch. sem. POMI, 477, 2018, 54–86

[12] Zvyagin V. G., Orlov V. P., “O regulyarnosti slabykh reshenii obobschennoi modeli vyazkouprugosti Foigta”, Zhurn. vych. mat. i mat. fiz., 60:11 (2020), 1933–1949 | DOI | Zbl

[13] Zvyagin V. G., Turbin M. V., Matematicheskie voprosy gidrodinamiki vyazkouprugikh sred, Krasand, M., 2012

[14] Sadovskii B. N., “Predelno kompaktnye i uplotnyayuschie operatory”, Usp. mat. nauk, 27:1 (1972), 81–146 | MR | Zbl

[15] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987

[16] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999

[17] Agranovich Yu. Ya., Sobolevskii P. E., “Motion of nonlinear visco-elastic fluid”, Nonlinear Anal., 32:6 (1998), 755–760 | DOI | MR | Zbl

[18] Aubin J. P., Cellina A., Differential inclusions. Set valued maps and viability theory, Springer, Berlin, 1984 | MR | Zbl

[19] Bagley R. L., Torvik P. J., “A theoretical basis for the application of fractional calculus to viscoelasticity”, J. Rheol., 27 (1983), 201–210 | DOI | Zbl

[20] Crippa G., “The ordinary differential equation with non-Lipschitz vector fields”, Boll. Unione Mat. Ital. (9), 1:2 (2008), 333–348 | MR | Zbl

[21] Crippa G., de Lellis C., “Estimates and regularity results for the diPerna—Lions flow”, J. Reine Angew. Math., 616 (2008), 15–46 | MR | Zbl

[22] DiPerna R. J., Lions P. L., “Ordinary differential equations, transport theory and Sobolev spaces”, Invent. Math., 98:3 (1989), 511–547 | DOI | MR | Zbl

[23] Mainardi F., Spada G., “Creep, relaxation and viscosity properties for basic fractional models in rheology”, Eur. Phys. J. Spec. Topics, 193 (2011), 133–160 | DOI

[24] Zvyagin V. G., Kostenko E. I., “Investigation of the weak solvability of one fractional model with infinite memory”, Lobachevskii J. Math., 44:3 (2023), 969–988 | DOI | MR | Zbl

[25] Zvyagin V., Obukhovskii V., Zvyagin A., “On inclusions with multivalued operators and their applications to some optimization problems”, J. Fixed Point Theory Appl., 16 (2014), 27–82 | DOI | MR

[26] Zvyagin V., Orlov V., “Weak solvability of fractional Voigt model of viscoelasticity”, Discrete Contin. Dyn. Syst., 38:12 (2018), 6327–6350 | DOI | MR | Zbl

[27] Zvyagin V., Orlov V., “Weak solvability of one viscoelastic fractional dynamics model of continuum with memory”, J. Math. Fluid Mech., 23:1 (2021), 9 | DOI | MR

[28] Zvyagin V., Zvyagin A., Ustiuzhaninova A., “Optimal feedback control problem for the fractional Voigt-$\alpha$ model”, Mathematics, 8:7 (2020), 1197 | DOI