Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2023_69_4_a4, author = {A. V. Zvyagin and E. I. Kostenko}, title = {The existence problem of feedback control for one fractional {Voigt} model}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {621--642}, publisher = {mathdoc}, volume = {69}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a4/} }
TY - JOUR AU - A. V. Zvyagin AU - E. I. Kostenko TI - The existence problem of feedback control for one fractional Voigt model JO - Contemporary Mathematics. Fundamental Directions PY - 2023 SP - 621 EP - 642 VL - 69 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a4/ LA - ru ID - CMFD_2023_69_4_a4 ER -
%0 Journal Article %A A. V. Zvyagin %A E. I. Kostenko %T The existence problem of feedback control for one fractional Voigt model %J Contemporary Mathematics. Fundamental Directions %D 2023 %P 621-642 %V 69 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a4/ %G ru %F CMFD_2023_69_4_a4
A. V. Zvyagin; E. I. Kostenko. The existence problem of feedback control for one fractional Voigt model. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 4, pp. 621-642. http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a4/
[1] Astarita Dzh., Maruchchi Dzh., Osnovy gidrodinamiki nenyutonovskikh zhidkostei, Mir, M., 1979
[2] Akhmerov R. R., Kamenskii M. I., Potapov A. S., Rodkina A. E., Sadovskii B. N., Mery nekompaktnosti i uplotnyayuschie operatory, Nauka, Novosibirsk, 1986 | MR
[3] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, Librokom, M., 2011 | MR
[4] Dmitrienko V. T., Zvyagin V. G., “Gomotopicheskaya klassifikatsiya odnogo klassa nepreryvnykh otobrazhenii”, Mat. zametki, 31:5 (1982), 801–812 | MR | Zbl
[5] Zvyagin V. G., “Approksimatsionno-topologicheskii podkhod k issledovaniyu matematicheskikh zadach gidrodinamiki”, Sovrem. mat. Fundam. napravl., 46, 2012, 92–119
[6] Zvyagin A. V., “Zadacha optimalnogo upravleniya dlya statsionarnoi modeli slabo kontsentrirovannykh vodnykh rastvorov polimerov”, Diff. uravn., 49:2 (2013), 245–249 | Zbl
[7] Zvyagin A. V., “Optimalnoe upravlenie s obratnoi svyazyu dlya alfa-modeli Lere i alfa-modeli Nave—Stoksa”, Dokl. RAN, 486:5 (2019), 527–530 | DOI | Zbl
[8] Zvyagin A. V., “O slaboi razreshimosti i skhodimosti reshenii drobnoi alfa-modeli Foigta dvizheniya vyazkouprugoi sredy”, Usp. mat. nauk, 74:3 (2019), 189–190 | DOI | MR | Zbl
[9] Zvyagin A. V., “Issledovanie slaboi razreshimosti drobnoi alfa-modeli Foigta”, Izv. RAN. Ser. mat., 85:1 (2021), 66–97 | DOI | MR | Zbl
[10] Zvyagin V. G., Dmitrienko V. T., “O slabykh resheniyakh regulyarizovannoi modeli vyazkouprugoi zhidkosti”, Diff. uravn., 38:12 (2002), 1633–1645 | MR | Zbl
[11] Zvyagin V. G., Zvyagin A. V., Turbin M. V., “Optimalnoe upravlenie s obratnoi svyazyu dlya modeli Bingama s periodicheskimi usloviyami po prostranstvennym peremennym”, Zap. nauch. sem. POMI, 477, 2018, 54–86
[12] Zvyagin V. G., Orlov V. P., “O regulyarnosti slabykh reshenii obobschennoi modeli vyazkouprugosti Foigta”, Zhurn. vych. mat. i mat. fiz., 60:11 (2020), 1933–1949 | DOI | Zbl
[13] Zvyagin V. G., Turbin M. V., Matematicheskie voprosy gidrodinamiki vyazkouprugikh sred, Krasand, M., 2012
[14] Sadovskii B. N., “Predelno kompaktnye i uplotnyayuschie operatory”, Usp. mat. nauk, 27:1 (1972), 81–146 | MR | Zbl
[15] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987
[16] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999
[17] Agranovich Yu. Ya., Sobolevskii P. E., “Motion of nonlinear visco-elastic fluid”, Nonlinear Anal., 32:6 (1998), 755–760 | DOI | MR | Zbl
[18] Aubin J. P., Cellina A., Differential inclusions. Set valued maps and viability theory, Springer, Berlin, 1984 | MR | Zbl
[19] Bagley R. L., Torvik P. J., “A theoretical basis for the application of fractional calculus to viscoelasticity”, J. Rheol., 27 (1983), 201–210 | DOI | Zbl
[20] Crippa G., “The ordinary differential equation with non-Lipschitz vector fields”, Boll. Unione Mat. Ital. (9), 1:2 (2008), 333–348 | MR | Zbl
[21] Crippa G., de Lellis C., “Estimates and regularity results for the diPerna—Lions flow”, J. Reine Angew. Math., 616 (2008), 15–46 | MR | Zbl
[22] DiPerna R. J., Lions P. L., “Ordinary differential equations, transport theory and Sobolev spaces”, Invent. Math., 98:3 (1989), 511–547 | DOI | MR | Zbl
[23] Mainardi F., Spada G., “Creep, relaxation and viscosity properties for basic fractional models in rheology”, Eur. Phys. J. Spec. Topics, 193 (2011), 133–160 | DOI
[24] Zvyagin V. G., Kostenko E. I., “Investigation of the weak solvability of one fractional model with infinite memory”, Lobachevskii J. Math., 44:3 (2023), 969–988 | DOI | MR | Zbl
[25] Zvyagin V., Obukhovskii V., Zvyagin A., “On inclusions with multivalued operators and their applications to some optimization problems”, J. Fixed Point Theory Appl., 16 (2014), 27–82 | DOI | MR
[26] Zvyagin V., Orlov V., “Weak solvability of fractional Voigt model of viscoelasticity”, Discrete Contin. Dyn. Syst., 38:12 (2018), 6327–6350 | DOI | MR | Zbl
[27] Zvyagin V., Orlov V., “Weak solvability of one viscoelastic fractional dynamics model of continuum with memory”, J. Math. Fluid Mech., 23:1 (2021), 9 | DOI | MR
[28] Zvyagin V., Zvyagin A., Ustiuzhaninova A., “Optimal feedback control problem for the fractional Voigt-$\alpha$ model”, Mathematics, 8:7 (2020), 1197 | DOI