Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2023_69_4_a0, author = {A. V. Boltachev}, title = {On ellipticity of operators with shear mappings}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {565--577}, publisher = {mathdoc}, volume = {69}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a0/} }
A. V. Boltachev. On ellipticity of operators with shear mappings. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 4, pp. 565-577. http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a0/
[1] Agranovich M. C., Sobolevskie prostranstva, ikh obobscheniya i ellipticheskie zadachi v oblastyakh s gladkoi i lipshitsevoi granitsei, MTsNMO, M., 2013
[2] Baldare A., Nazaikinskii V. E., Savin A. Yu., Shroe E., “$C^*$-algebry zadach sopryazheniya i ellipticheskie kraevye zadachi s operatorami sdviga”, Mat. zametki, 111:5 (2022), 692–716 | DOI | MR | Zbl
[3] Zhuikov K. N., Savin A. Yu., “Eta-invariant ellipticheskikh kraevykh zadach s parametrom”, Sovrem. mat. Fundam. napravl., 69, no. 4, 2023, 600–621
[4] Rossovskii L. E., “Ellipticheskie funktsionalno-differentsialnye uravneniya so szhatiem i rastyazheniem argumentov neizvestnoi funktsii”, Sovrem. mat. Fundam. napravl., 54, 2014, 3–138
[5] Savin A. Yu., Sternin B. Yu., “Ob indekse ellipticheskikh operatorov dlya gruppy rastyazhenii”, Mat. sb., 202:10 (2011), 99–130 | DOI | Zbl
[6] Tasevich A. L., “Gladkost obobschennykh reshenii zadachi Dirikhle dlya silno ellipticheskikh funktsionalno-differentsialnykh uravnenii s ortotropnymi szhatiyami na granitse sosednikh podoblastei”, Sovrem. mat. Fundam. napravl., 69, no. 1, 2023, 152–165 | MR
[7] Yakubovich V. A., Starzhinskii V. M., Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Nauka, M., 1972 | MR
[8] Antonevich A., Belousov M., Lebedev A., Functional differential equations: II. $C^*$-applications, v. 2, Equations with discontinuous coefficients and boundary value problems, Longman, Harlow, 1998 | MR
[9] Antonevich A. B., Lebedev A. V., “Functional equations and functional operator equations. A $C^*$-algebraic approach”, Proc. SPb. Math. Soc., VI, Am. Math. Soc., Providence, 2000, 25–116 | MR | Zbl
[10] Baldare A., Nazaikinskii V. E., Savin A. Yu., Schrohe E., “$C^*$-algebras of transmission problems and elliptic boundary value problems with shift operators”, Math. Notes, 111:5 (2022), 701–721 | DOI | MR | Zbl
[11] Boltachev A. V., Savin A. Yu., “Trajectory symbols and the Fredholm property of boundary value problems for differential operators with shifts”, Russ. J. Math. Phys., 30 (2023), 135–151 | DOI | MR | Zbl
[12] Boutet de Monvel L., “Boundary problems for pseudodifferential operators”, Acta Math., 126 (1971), 11–51 | DOI | MR | Zbl
[13] Connes A., Noncommutative geometry, Academic Press, San Diego, 1994 | MR | Zbl
[14] Hörmander L., The analysis of linear partial differential operators, v. III, Springer, Berlin—Heidelberg—New York—Tokyo, 1985 | MR
[15] Onanov G. G., Skubachevskii A. L., “Nonlocal problems in the mechanics of three-layer shells”, Math. Model. Nat. Phenom., 12:6 (2017), 192–207 | DOI | MR | Zbl
[16] Onanov G. G., Tsvetkov E. L., “On the minimum of the energy functional with respect to functions with deviating argument in a stationary problem of elasticity theory”, Russ. J. Math. Phys., 3:4 (1995), 491–500 | MR | Zbl
[17] Rempel S., Schulze B.-W., Index theory of elliptic boundary problems, Akademie, Berlin, 1982 | MR | Zbl
[18] Savin A. Yu., Sternin B. Yu., “Elliptic differential dilation-contraction problems on manifolds with boundary”, Differ. Equ., 53:5 (2017), 665–676 | DOI | MR | Zbl
[19] Schrohe E., “A short introduction to Boutet de Monvel's calculus”, Approaches to singular analysis, Birkhäuser, Basel, 2001, 85–116 | DOI | MR | Zbl
[20] Skubachevskii A. L., Elliptic functional differential equations and applications, Birkhäuser, Basel—Boston—Berlin, 1997 | MR | Zbl
[21] Skubachevskii A. L., “Boundary-value problems for elliptic functional-differential equations and their applications”, Russ. Math. Surv., 71:5 (2016), 801–906 | DOI | MR | Zbl
[22] Taubes C. H., “Gauge theory on asymptotically periodic 4-manifolds”, J. Differ. Geom., 25 (1987), 363–430 | DOI | MR | Zbl
[23] Van der Pol B., Strutt II M. J. O., “On the stability of the solutions of Mathieu's equation”, Philos. Magazine, 5:27 (1928), 18–38