On ellipticity of operators with shear mappings
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 4, pp. 565-577.

Voir la notice de l'article provenant de la source Math-Net.Ru

The nonlocal boundary value problems are considered, in which the main operator and the operators in the boundary conditions include the differential operators and twisting operators. The definition of the trajectory symbols for this class of problems is given. We show that the elliptic problems define the Fredholm operators in the corresponding Sobolev spaces. The ellipticity condition of such nonlocal boundary value problem is given.
Keywords: ellipticity, twisting operator, Fredholm operator, trajectory symbol, nonlocal boundary-value problem.
@article{CMFD_2023_69_4_a0,
     author = {A. V. Boltachev},
     title = {On ellipticity of operators with shear mappings},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {565--577},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a0/}
}
TY  - JOUR
AU  - A. V. Boltachev
TI  - On ellipticity of operators with shear mappings
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 565
EP  - 577
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a0/
LA  - ru
ID  - CMFD_2023_69_4_a0
ER  - 
%0 Journal Article
%A A. V. Boltachev
%T On ellipticity of operators with shear mappings
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 565-577
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a0/
%G ru
%F CMFD_2023_69_4_a0
A. V. Boltachev. On ellipticity of operators with shear mappings. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 4, pp. 565-577. http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a0/

[1] Agranovich M. C., Sobolevskie prostranstva, ikh obobscheniya i ellipticheskie zadachi v oblastyakh s gladkoi i lipshitsevoi granitsei, MTsNMO, M., 2013

[2] Baldare A., Nazaikinskii V. E., Savin A. Yu., Shroe E., “$C^*$-algebry zadach sopryazheniya i ellipticheskie kraevye zadachi s operatorami sdviga”, Mat. zametki, 111:5 (2022), 692–716 | DOI | MR | Zbl

[3] Zhuikov K. N., Savin A. Yu., “Eta-invariant ellipticheskikh kraevykh zadach s parametrom”, Sovrem. mat. Fundam. napravl., 69, no. 4, 2023, 600–621

[4] Rossovskii L. E., “Ellipticheskie funktsionalno-differentsialnye uravneniya so szhatiem i rastyazheniem argumentov neizvestnoi funktsii”, Sovrem. mat. Fundam. napravl., 54, 2014, 3–138

[5] Savin A. Yu., Sternin B. Yu., “Ob indekse ellipticheskikh operatorov dlya gruppy rastyazhenii”, Mat. sb., 202:10 (2011), 99–130 | DOI | Zbl

[6] Tasevich A. L., “Gladkost obobschennykh reshenii zadachi Dirikhle dlya silno ellipticheskikh funktsionalno-differentsialnykh uravnenii s ortotropnymi szhatiyami na granitse sosednikh podoblastei”, Sovrem. mat. Fundam. napravl., 69, no. 1, 2023, 152–165 | MR

[7] Yakubovich V. A., Starzhinskii V. M., Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Nauka, M., 1972 | MR

[8] Antonevich A., Belousov M., Lebedev A., Functional differential equations: II. $C^*$-applications, v. 2, Equations with discontinuous coefficients and boundary value problems, Longman, Harlow, 1998 | MR

[9] Antonevich A. B., Lebedev A. V., “Functional equations and functional operator equations. A $C^*$-algebraic approach”, Proc. SPb. Math. Soc., VI, Am. Math. Soc., Providence, 2000, 25–116 | MR | Zbl

[10] Baldare A., Nazaikinskii V. E., Savin A. Yu., Schrohe E., “$C^*$-algebras of transmission problems and elliptic boundary value problems with shift operators”, Math. Notes, 111:5 (2022), 701–721 | DOI | MR | Zbl

[11] Boltachev A. V., Savin A. Yu., “Trajectory symbols and the Fredholm property of boundary value problems for differential operators with shifts”, Russ. J. Math. Phys., 30 (2023), 135–151 | DOI | MR | Zbl

[12] Boutet de Monvel L., “Boundary problems for pseudodifferential operators”, Acta Math., 126 (1971), 11–51 | DOI | MR | Zbl

[13] Connes A., Noncommutative geometry, Academic Press, San Diego, 1994 | MR | Zbl

[14] Hörmander L., The analysis of linear partial differential operators, v. III, Springer, Berlin—Heidelberg—New York—Tokyo, 1985 | MR

[15] Onanov G. G., Skubachevskii A. L., “Nonlocal problems in the mechanics of three-layer shells”, Math. Model. Nat. Phenom., 12:6 (2017), 192–207 | DOI | MR | Zbl

[16] Onanov G. G., Tsvetkov E. L., “On the minimum of the energy functional with respect to functions with deviating argument in a stationary problem of elasticity theory”, Russ. J. Math. Phys., 3:4 (1995), 491–500 | MR | Zbl

[17] Rempel S., Schulze B.-W., Index theory of elliptic boundary problems, Akademie, Berlin, 1982 | MR | Zbl

[18] Savin A. Yu., Sternin B. Yu., “Elliptic differential dilation-contraction problems on manifolds with boundary”, Differ. Equ., 53:5 (2017), 665–676 | DOI | MR | Zbl

[19] Schrohe E., “A short introduction to Boutet de Monvel's calculus”, Approaches to singular analysis, Birkhäuser, Basel, 2001, 85–116 | DOI | MR | Zbl

[20] Skubachevskii A. L., Elliptic functional differential equations and applications, Birkhäuser, Basel—Boston—Berlin, 1997 | MR | Zbl

[21] Skubachevskii A. L., “Boundary-value problems for elliptic functional-differential equations and their applications”, Russ. Math. Surv., 71:5 (2016), 801–906 | DOI | MR | Zbl

[22] Taubes C. H., “Gauge theory on asymptotically periodic 4-manifolds”, J. Differ. Geom., 25 (1987), 363–430 | DOI | MR | Zbl

[23] Van der Pol B., Strutt II M. J. O., “On the stability of the solutions of Mathieu's equation”, Philos. Magazine, 5:27 (1928), 18–38