Analytical solution of the space-time fractional reaction--diffusion equation with~variable coefficients
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 3, pp. 430-444.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we solve the problem of an inhomogeneous one-dimensional fractional differential reaction–diffusion equation with variable coefficients (1.1)–(1.2) by the method of separation of variables (the Fourier method). The Caputo derivative and the Riemann–Liouville derivative are considered in the time and space directions, respectively. We prove that the obtained solution of the boundary-value problem satisfies the given boundary conditions. We discuss the convergence of the series defining the proposed solution.
Mots-clés : reaction–diffusion equation, advective diffusion
Keywords: boundary-value problem, fractional derivative, Caputo derivative, Riemann–Liouville derivative, separation of variables method, Fourier method.
@article{CMFD_2023_69_3_a3,
     author = {E. I. Mahmoud},
     title = {Analytical solution of the space-time fractional reaction--diffusion equation with~variable coefficients},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {430--444},
     publisher = {mathdoc},
     volume = {69},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_3_a3/}
}
TY  - JOUR
AU  - E. I. Mahmoud
TI  - Analytical solution of the space-time fractional reaction--diffusion equation with~variable coefficients
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 430
EP  - 444
VL  - 69
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_3_a3/
LA  - ru
ID  - CMFD_2023_69_3_a3
ER  - 
%0 Journal Article
%A E. I. Mahmoud
%T Analytical solution of the space-time fractional reaction--diffusion equation with~variable coefficients
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 430-444
%V 69
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_3_a3/
%G ru
%F CMFD_2023_69_3_a3
E. I. Mahmoud. Analytical solution of the space-time fractional reaction--diffusion equation with~variable coefficients. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 3, pp. 430-444. http://geodesic.mathdoc.fr/item/CMFD_2023_69_3_a3/

[1] Aleroev T. S., Aleroeva Kh. T., “Ob odnom klasse nesamosopryazhennykh operatorov, soputstvuyuschikh differentsialnym uravneniyam drobnogo poryadka”, Ukr. mat. visn, 12:3 (2015), 293–310

[2] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[3] Aleroev T. S., “Solving the boundary value problems for differential equations with fractional derivatives by the method of separation of variables”, Mathematics, 8 (2020), 1877 | DOI

[4] Aleroev T. S., Elsayed A. M., Mahmoud E. I., “Solving one dimensional time-space fractional vibration string equation”, Conf. Ser. Mater. Sci. Eng, 1129 (2021), 20–30

[5] Aleroev T. S., Kirane M., Malik S. A., “Determination of a source term for a time fractional diffusion equation with an integral type over-determining condition”, Electron. J. Differ. Equ, 270 (2013), 1–16 | MR

[6] Curtiss D. R., “Recent extensions of Descartes' rule of signs”, Ann. Math, 19:4 (1918), 251–278 | DOI | MR

[7] Gorenflo R., Kilbas A. A., Mainardi F., Rogosin S. V., Mittag-Leffler Functions Related Topics and Applications, Springer, New York, 2014 | MR | Zbl

[8] Gorenflo R., Mainardi F., “Random walk models for space fractional diffusion processes”, Fract. Calc. Appl. Anal, 1 (1998), 167–191 | MR | Zbl

[9] Hu Z., Liu W., Liu J., “Boundary value problems for fractional differential equations”, Tijdschrift voor Urologie, 2014:1 (2014), 1–11

[10] Luchko Y., Gorenflo R., “An operational method for solving fractional differential equations”, Acta Math, 24 (1999), 207–234 | MR

[11] Plociniczak L., “Eigenvalue asymptotics for a fractional boundary-value problem”, Appl. Math. Comput, 241 (2014), 125–128 | MR | Zbl

[12] Samko S. G., Kilbas A. A., Marichev O. I., Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, New York, 1993 | MR | Zbl