Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2023_69_3_a3, author = {E. I. Mahmoud}, title = {Analytical solution of the space-time fractional reaction--diffusion equation with~variable coefficients}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {430--444}, publisher = {mathdoc}, volume = {69}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_3_a3/} }
TY - JOUR AU - E. I. Mahmoud TI - Analytical solution of the space-time fractional reaction--diffusion equation with~variable coefficients JO - Contemporary Mathematics. Fundamental Directions PY - 2023 SP - 430 EP - 444 VL - 69 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2023_69_3_a3/ LA - ru ID - CMFD_2023_69_3_a3 ER -
%0 Journal Article %A E. I. Mahmoud %T Analytical solution of the space-time fractional reaction--diffusion equation with~variable coefficients %J Contemporary Mathematics. Fundamental Directions %D 2023 %P 430-444 %V 69 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2023_69_3_a3/ %G ru %F CMFD_2023_69_3_a3
E. I. Mahmoud. Analytical solution of the space-time fractional reaction--diffusion equation with~variable coefficients. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 3, pp. 430-444. http://geodesic.mathdoc.fr/item/CMFD_2023_69_3_a3/
[1] Aleroev T. S., Aleroeva Kh. T., “Ob odnom klasse nesamosopryazhennykh operatorov, soputstvuyuschikh differentsialnym uravneniyam drobnogo poryadka”, Ukr. mat. visn, 12:3 (2015), 293–310
[2] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003
[3] Aleroev T. S., “Solving the boundary value problems for differential equations with fractional derivatives by the method of separation of variables”, Mathematics, 8 (2020), 1877 | DOI
[4] Aleroev T. S., Elsayed A. M., Mahmoud E. I., “Solving one dimensional time-space fractional vibration string equation”, Conf. Ser. Mater. Sci. Eng, 1129 (2021), 20–30
[5] Aleroev T. S., Kirane M., Malik S. A., “Determination of a source term for a time fractional diffusion equation with an integral type over-determining condition”, Electron. J. Differ. Equ, 270 (2013), 1–16 | MR
[6] Curtiss D. R., “Recent extensions of Descartes' rule of signs”, Ann. Math, 19:4 (1918), 251–278 | DOI | MR
[7] Gorenflo R., Kilbas A. A., Mainardi F., Rogosin S. V., Mittag-Leffler Functions Related Topics and Applications, Springer, New York, 2014 | MR | Zbl
[8] Gorenflo R., Mainardi F., “Random walk models for space fractional diffusion processes”, Fract. Calc. Appl. Anal, 1 (1998), 167–191 | MR | Zbl
[9] Hu Z., Liu W., Liu J., “Boundary value problems for fractional differential equations”, Tijdschrift voor Urologie, 2014:1 (2014), 1–11
[10] Luchko Y., Gorenflo R., “An operational method for solving fractional differential equations”, Acta Math, 24 (1999), 207–234 | MR
[11] Plociniczak L., “Eigenvalue asymptotics for a fractional boundary-value problem”, Appl. Math. Comput, 241 (2014), 125–128 | MR | Zbl
[12] Samko S. G., Kilbas A. A., Marichev O. I., Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, New York, 1993 | MR | Zbl