Mathematical model of matter transfer in a helical magnetic field using boundary conditions at infinity
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 3, pp. 418-429.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a mathematical model of plasma transfer in an open magnetic trap using the condition of zero plasma concentration at infinity. New experimental data obtained at the SMOLA trap at the Budker Institute of Nuclear Physics SB RAS were used. Plasma confinement in the plant is carried out by transmitting a pulse from a magnetic field with helical symmetry to a rotating plasma. The mathematical model is based on a stationary plasma transfer equation in an axially symmetric formulation. The stationary equation of the transfer of matter contains second spatial derivatives. The optimal template for the approximation of the mixed derivative based on the test problem is selected. The numerical implementation of the model by the establishment method and the method of successive over-relaxation is compared.
Keywords: mathematical modeling, helical magnetic field.
Mots-clés : transport equation
@article{CMFD_2023_69_3_a2,
     author = {G. G. Lazareva and I. P. Oksogoeva and A. V. Sudnikov},
     title = {Mathematical model of matter transfer in a helical magnetic field using boundary conditions at infinity},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {418--429},
     publisher = {mathdoc},
     volume = {69},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_3_a2/}
}
TY  - JOUR
AU  - G. G. Lazareva
AU  - I. P. Oksogoeva
AU  - A. V. Sudnikov
TI  - Mathematical model of matter transfer in a helical magnetic field using boundary conditions at infinity
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 418
EP  - 429
VL  - 69
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_3_a2/
LA  - ru
ID  - CMFD_2023_69_3_a2
ER  - 
%0 Journal Article
%A G. G. Lazareva
%A I. P. Oksogoeva
%A A. V. Sudnikov
%T Mathematical model of matter transfer in a helical magnetic field using boundary conditions at infinity
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 418-429
%V 69
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_3_a2/
%G ru
%F CMFD_2023_69_3_a2
G. G. Lazareva; I. P. Oksogoeva; A. V. Sudnikov. Mathematical model of matter transfer in a helical magnetic field using boundary conditions at infinity. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 3, pp. 418-429. http://geodesic.mathdoc.fr/item/CMFD_2023_69_3_a2/

[1] Brushlinskii K. V., Kondratev I. A., “Matematicheskie modeli ravnovesiya plazmy v toroidalnykh i tsilindricheskikh magnitnykh lovushkakh”, Preprinty IPM im. M. V. Keldysha, 2018, 20, 20 pp.

[2] Burdakov A. V., Postupaev V. V., “Mnogoprobochnaya lovushka: put ot probkotrona Budkera k lineinomu termoyadernomu reaktoru”, Usp. fiz. nauk, 188:6 (2018), 651–671 | DOI

[3] Volkov V. M., Prokonina E. V., “Raznostnye skhemy i iteratsionnye metody dlya mnogomernykh ellipticheskikh uravnenii so smeshannymi proizvodnymi”, Vest. NAN Belarusi. Ser. Fiz. Mat, 54:4 (2018), 454–459 | MR

[4] Gruber R., Degtyarev L. M., Kuper A., Martynov A. A., Medvedev S. Yu., Shafranov V. D., “Trekhmernaya model ravnovesiya plazmy s poloidalnym predstavleniem magnitnogo polya”, Fiz. plazmy, 22:3 (1996), 204

[5] Kalitkin N. N., Kostomarov D. P., “Matematicheskie modeli fiziki plazmy (obzor)”, Mat. model, 18:11 (2006), 67–94 | MR | Zbl

[6] Samarskii A. A., Gulin A. L., Chislennye metody, Nauka, M., 1989

[7] Samarskii A. A., Mazhukin V. I., Matus P. P., Shishkin G. I., “Monotonnye raznostnye skhemy dlya uravnenii so smeshannymi proizvodnymi”, Mat. model, 13:2 (2001), 17–26 | MR | Zbl

[8] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978

[9] Skovoroda A. A., Magnitnye lovushki dlya uderzhaniya plazmy, Fizmatlit, M., 2009

[10] Skovorodin D. I., Chernoshtanov I. S., Amirov V. Kh., Astrelin V. T., Bagryanskii P. A., Beklemishev A. D., Burdakov A. V., Gorbovskii A. I., Kotelnikov I. A., Magommedov E. M., Polosatkin S. V., Postupaev V. V., Prikhodko V. V., Savkin V. Ya., Soldatkina E. I., Solomakhin A. L., Sorokin A. V., Sudnikov A. V., Khristo M. S., Shiyankov S. V., Yakovlev D. V., Scherbakov V. I., Gazodinamicheskaya mnogoprobochnaya lovushka GDML, Preprint IYaF, No 2023-02, 2023, 74 pp.

[11] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Novosibirsk, M., 1989 | MR

[12] Bagryansky P. A., Beklemishev A. D., Postupaev V. V., “Encouraging results and new ideas for fusion in linear traps”, J. Fusion Energy, 38 (2019), 162–181 | DOI

[13] Beklemishev A. D., “Helicoidal system for axial plasma pumping in linear traps”, Fusion Sci. Technol, 63:1 (2013), 355–357 | DOI

[14] Beklemishev A. D., “Radial and axial transport in trap sections with helical corrugation”, AIP Conference Proceedings, 1771 (2016), 040006 | DOI

[15] Cohen B., Barnes D., Dawson J., Hammett G., Lee W., Kerbel G., Leboeuf J., Liewer P., Tajima T., Waltz R., “The numerical tokamak project: simulation of turbulent transport”, Comput. Phys. Commun., 87 (1995), 1–15 | DOI | Zbl

[16] Forest C. B., Flanagan K., Brookhart M., Clark M., Cooper C. M., Dsangles V., Egedal J., Endrizzi D., Khalzov I. V., Li H., Miesch M., Milhone J., Nornberg M., Olson J., Peterson E., Roesler F., Schekochihin A., Schmitz O., Siller R, Spitkovsky A., Stemo A., Wallace J., Weisberg D., Zweibel E., “The Wisconsin Plasma Astrophysics Laboratory”, J. Plasma Phys, 81:5 (2015), 345810501 | DOI

[17] Lazareva G. G., Oksogoeva I. P., Sudnikov A. V., “Mathematical modeling of plasma transport in a helical magnetic field”, Lobachevskii J. Math., 43:10 (2022), 2685–2691 | DOI | MR

[18] Linsmeier C., Unterberg B., Coenen J. W., Doerner R. P., Greuner H., Kreter A., Maier H., “Material testing facilities and programs for plasma-facing component testing”, Nucl. Fusion, 57:9 (2017), 092012 | DOI

[19] Postupaev V. V., Sudnikov A. V., Beklemishev A. D., Ivanov I. A., “Helical mirrors for active plasma flow suppression in linear magnetic traps”, Fusion Eng. Des, 106 (2016), 29–31 | DOI

[20] Rybak I., “Monotone and conservative difference schemes for elliptic equations with mixed derivatives”, Math. Model. Anal, 9:2 (2005), 169–178 | DOI | MR

[21] Sudnikov A. V., Beklemishev A. D., Postupaev V. V., Burdakov A. V., Ivanov I. A., Vasilyeva N. G., Kuklin K. N., Sidorov E. N., “SMOLA device for helical mirror concept exploration”, Fusion Eng. Des, 122 (2017), 86–93 | DOI

[22] Sudnikov A. V., Ivanov I. A., Inzhevatkina A. A., Larichkin M. V., Lomov K. A., Postupaev V. V., Tolkachev M. S., Ustyuzhanin V. O., “Plasma flow suppression by the linear helical mirror system”, J. Plasma Phys, 88:1 (2022), 905880102 | DOI