Smoothness of generalized solutions of a boundary-value problem for a second-order differential-difference equation with mixed boundary conditions
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 3, pp. 399-417.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a boundary-value problem with mixed boundary conditions for a second-order differential-difference equation on a finite interval $(0,d).$ We prove existence of a generalized solution of the problem and study the conditions on the right-hand side of the differential-difference equation ensuring the smoothness of the generalized solution over the entire interval.
Keywords: boundary-value problem, differential-difference equations, generalized solutions.
@article{CMFD_2023_69_3_a1,
     author = {N. O. Ivanov},
     title = {Smoothness of generalized solutions of a boundary-value problem for a second-order differential-difference equation with mixed boundary conditions},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {399--417},
     publisher = {mathdoc},
     volume = {69},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_3_a1/}
}
TY  - JOUR
AU  - N. O. Ivanov
TI  - Smoothness of generalized solutions of a boundary-value problem for a second-order differential-difference equation with mixed boundary conditions
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 399
EP  - 417
VL  - 69
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_3_a1/
LA  - ru
ID  - CMFD_2023_69_3_a1
ER  - 
%0 Journal Article
%A N. O. Ivanov
%T Smoothness of generalized solutions of a boundary-value problem for a second-order differential-difference equation with mixed boundary conditions
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 399-417
%V 69
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_3_a1/
%G ru
%F CMFD_2023_69_3_a1
N. O. Ivanov. Smoothness of generalized solutions of a boundary-value problem for a second-order differential-difference equation with mixed boundary conditions. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 3, pp. 399-417. http://geodesic.mathdoc.fr/item/CMFD_2023_69_3_a1/

[1] Adkhamova A. Sh., Skubachevskii A. L., “Ob odnoi zadache uspokoeniya nestatsionarnoi sistemy upravleniya s posledeistviem”, Sovrem. mat. Fundam. napravl., 65, no. 4, 2019, 547–556

[2] Adkhamova A. Sh., Skubachevskii A. L., “Ob uspokoenii sistemy upravleniya s posledeistviem neitralnogo tipa”, Dokl. RAN. Ser. Mat. Inform. Prots. Upr., 490 (2020), 81–84 | DOI | MR | Zbl

[3] Kamenskii A. G., “Kraevye zadachi dlya uravnenii s formalno simmetrichnymi differentsialno-raznostnymi operatorami”, Diff. uravn., 12:5 (1976), 815–824 | MR | Zbl

[4] Kamenskii G. A., Myshkis A. D., “K postanovke kraevykh zadach dlya differentsialnykh uravnenii s otklonyayuschimsya argumentom i neskolkimi starshimi chlenami”, Diff. uravn, 10:3 (1974), 409–418 | Zbl

[5] Kamenskii G. A., Myshkis A. D., Skubachevskii A. L., “O gladkikh resheniyakh kraevoi zadachi dlya differentsialno-raznostnogo uravneniya neitralnogo tipa”, Ukr. mat. zh., 37:5 (1985), 581–585 | MR

[6] Krasovskii N. N., Teoriya upravleniya dvizheniem. Lineinye sistemy, Nauka, M., 1968

[7] Kryazhimskii A. V., Maksimov V. I., Osipov Yu. S., “O pozitsionnom modelirovanii v dinamicheskikh sistemakh”, Prikl. mat. mekh, 47:6 (1983), 883–890 | MR

[8] Liiko V. V., Skubachevskii A. L., “Silno ellipticheskie differentsialno-raznostnye uravneniya so smeshannymi kraevymi usloviyami v tsilindricheskoi oblasti”, Sovrem. mat. Fundam. napravl., 65, no. 4, 2019, 635–654

[9] Liiko V. V., Skubachevskii A. L., “Smeshannye zadachi dlya silno ellipticheskikh differentsialno-raznostnykh uravnenii v tsilindre”, Mat. zametki, 107:5 (2020), 693–716 | DOI | MR | Zbl

[10] Neverova D. A., Skubachevskii A. L., “O klassicheskikh i obobschennykh resheniyakh kraevykh zadach dlya differentsialno-raznostnykh uravnenii s peremennymi koeffitsientami”, Mat. zametki, 94:5 (2013), 702–719 | DOI | MR | Zbl

[11] Onanov G. G., Skubachevskii A. L., “Differentsialnye uravneniya s otklonyayuschimisya argumentami v statsionarnykh zadachakh mekhaniki deformiruemogo tela”, Prikl. mekh, 15:5 (1979), 39–47 | MR | Zbl

[12] Osipov Yu. S., “O stabilizatsii upravlyaemykh sistem s zapazdyvaniem”, Diff. uravn, 1:5 (1965), 605–618 | Zbl

[13] Skubachevskii A. L., “K zadache ob uspokoenii sistemy upravleniya s posledeistviem”, Dokl. RAN, 335:2 (1994), 157–160 | Zbl

[14] Skubachevskii A. L., Ivanov N. O., “Ob obobschennykh resheniyakh vtoroi kraevoi zadachi dlya differentsialno-raznostnykh uravnenii s peremennymi koeffitsientami”, Sovrem. mat. Fundam. napravl., 67, no. 3, 2021, 576–595

[15] Skubachevskii A. L., Ivanov N. O., “Ob obobschennykh resheniyakh vtoroi kraevoi zadachi dlya differentsialno-raznostnykh uravnenii s peremennymi koeffitsientami na intervale netseloi dliny”, Mat. zametki, 111:6 (2022), 873–886 | DOI | Zbl

[16] Neverova D. A., “Generalized and classical solutions to the second and third boundary-value problem for differential-difference equations”, Funct. Differ. Equ, 21 (2014), 47–65 | MR | Zbl

[17] Onanov G. G., Skubachevskii A. L., “Nonlocal problems in the mechanics of three-layer shells”, Math. Model. Nat. Phenom, 12:6 (2017), 192–207 | DOI | MR | Zbl

[18] Onanov G. G., Tsvetkov E. L., “On the minimum of the energy functional with respect to functions with deviating argument in a stationary problem of elasticity theory”, Russ. J. Math. Phys, 3:4 (1995), 491–500 | MR | Zbl

[19] Skubachevskii A. L., Elliptic Functional Differential Equations and Applications, Birkhäuser, Basel–Boston–Berlin, 1997 | MR | Zbl