Exceptional sets
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 289-305.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study sequences of complex numbers of the first order. Multiple terms are allowed for such sequences. We also consider complex sequences with a finite maximum density. We construct special coverings of multiple sets $\{\lambda_k,n_k\}$ consisting of circles centered at points $\lambda_k$ of special radii. In particular, we construct coverings are with connected components of a relatively small diameter, as well as coverings that are $C_0$-sets. These coverings act as exceptional sets for entire functions of exponential type. Outside these sets, we obtain a representation of the logarithm of the modulus of an entire function. Previously, a similar representation was obtained by B. Ya. Levin outside the exceptional set, with respect to which only its existence is asserted. In contrast to this, in this paper we present a simple effective construction of an exceptional set. We construct bases of the invariant subspace of analytic functions in a convex domain. They consist of linear combinations of eigenfunctions and associated functions (exponential monomials) of the differentiation operator divided into relatively small groups.
Keywords: series of exponential monomials, exceptional set
Mots-clés : convex domain, condensation index.
@article{CMFD_2023_69_2_a7,
     author = {A. S. Krivosheev and O. A. Krivosheeva},
     title = {Exceptional sets},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {289--305},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a7/}
}
TY  - JOUR
AU  - A. S. Krivosheev
AU  - O. A. Krivosheeva
TI  - Exceptional sets
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 289
EP  - 305
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a7/
LA  - ru
ID  - CMFD_2023_69_2_a7
ER  - 
%0 Journal Article
%A A. S. Krivosheev
%A O. A. Krivosheeva
%T Exceptional sets
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 289-305
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a7/
%G ru
%F CMFD_2023_69_2_a7
A. S. Krivosheev; O. A. Krivosheeva. Exceptional sets. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 289-305. http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a7/

[1] Abdulnagimov A. I., Krivosheev A. S., “Pravilno raspredelennye podmnozhestva v kompleksnoi ploskosti”, Algebra i analiz, 28:4 (2016), 1–46 | MR

[2] Braichev G. G., “Indeks lakunarnosti”, Mat. zametki, 53:6 (1993), 3–10 | MR

[3] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva analiticheskikh funktsii. I. Spektralnyi analiz na vypuklykh oblastyakh”, Mat. sb., 87:4 (1972), 459–489

[4] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva analiticheskikh funktsii. II. Spektralnyi analiz na vypuklykh oblastyakh”, Mat. sb., 88:1 (1972), 3–30 | MR

[5] Krasichkov-Ternovskii I. F., “Odna geometricheskaya lemma, poleznaya v teorii tselykh funktsii, i teoremy tipa Levinsona”, Mat. zametki, 24:4 (1978), 531–546 | MR | Zbl

[6] Krivosheev A. S., “Fundamentalnyi printsip dlya invariantnykh podprostranstv v vypuklykh oblastyakh”, Izv. RAN. Ser. mat., 68:2 (2004), 71–136 | DOI | MR | Zbl

[7] Krivosheev A. S., “Pochti eksponentsialnyi bazis”, Ufimsk. mat. zh., 2:1 (2010), 87–96 | Zbl

[8] Krivosheev A. S., “Bazisy «po otnositelno malym gruppam»”, Ufimsk. mat. zh., 2:2 (2010), 67–89 | Zbl

[9] Krivosheev A. S., “Pochti eksponentsialnaya posledovatelnost eksponentsialnykh mnogochlenov”, Ufimsk. mat. zh., 4:1 (2012), 88–106

[10] Krivosheev A. S., Krivosheeva O. A., “Bazis v invariantnom podprostranstve analiticheskikh funktsii”, Mat. sb., 204:12 (2013), 49–104 | DOI | MR | Zbl

[11] Krivosheev A. S., Krivosheeva O. A., “Fundamentalnyi printsip i bazis v invariantnom podprostranstve”, Mat. zametki, 99:5 (2016), 684–697 | DOI | MR | Zbl

[12] Krivosheeva O. A., “Osobye tochki summy ryada eksponentsialnykh monomov na granitse oblasti skhodimosti”, Algebra i analiz, 23:2 (2011), 162–205

[13] Krivosheeva O. A., Krivosheev A. S., “Kriterii vypolneniya fundamentalnogo printsipa dlya invariantnykh podprostranstv v ogranichennykh vypuklykh oblastyakh kompleksnoi ploskosti”, Funkts. analiz i ego prilozh., 46:4 (2012), 14–30 | DOI | MR | Zbl

[14] Krivosheeva O. A., Krivosheev A. S., Rafikov A. I., “Otsenki snizu tselykh funktsii”, Ufimsk. mat. zh., 11:3 (2019), 46–62 | MR | Zbl

[15] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[16] Leontev A. F., Tselye funktsii. Ryady eksponent, Nauka, M., 1983 | MR