Exceptional sets
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 289-305
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we study sequences of complex numbers of the first order. Multiple terms are allowed for such sequences. We also consider complex sequences with a finite maximum density. We construct special coverings of multiple sets $\{\lambda_k,n_k\}$ consisting of circles centered at points $\lambda_k$ of special radii. In particular, we construct coverings are with connected components of a relatively small diameter, as well as coverings that are $C_0$-sets. These coverings act as exceptional sets for entire functions of exponential type. Outside these sets, we obtain a representation of the logarithm of the modulus of an entire function. Previously, a similar representation was obtained by B. Ya. Levin outside the exceptional set, with respect to which only its existence is asserted. In contrast to this, in this paper we present a simple effective construction of an exceptional set. We construct bases of the invariant subspace of analytic functions in a convex domain. They consist of linear combinations of eigenfunctions and associated functions (exponential monomials) of the differentiation operator divided into relatively small groups.
Keywords: series of exponential monomials, exceptional set
Mots-clés : convex domain, condensation index.
@article{CMFD_2023_69_2_a7,
     author = {A. S. Krivosheev and O. A. Krivosheeva},
     title = {Exceptional sets},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {289--305},
     year = {2023},
     volume = {69},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a7/}
}
TY  - JOUR
AU  - A. S. Krivosheev
AU  - O. A. Krivosheeva
TI  - Exceptional sets
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 289
EP  - 305
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a7/
LA  - ru
ID  - CMFD_2023_69_2_a7
ER  - 
%0 Journal Article
%A A. S. Krivosheev
%A O. A. Krivosheeva
%T Exceptional sets
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 289-305
%V 69
%N 2
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a7/
%G ru
%F CMFD_2023_69_2_a7
A. S. Krivosheev; O. A. Krivosheeva. Exceptional sets. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 289-305. http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a7/

[1] Abdulnagimov A. I., Krivosheev A. S., “Pravilno raspredelennye podmnozhestva v kompleksnoi ploskosti”, Algebra i analiz, 28:4 (2016), 1–46 | MR

[2] Braichev G. G., “Indeks lakunarnosti”, Mat. zametki, 53:6 (1993), 3–10 | MR

[3] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva analiticheskikh funktsii. I. Spektralnyi analiz na vypuklykh oblastyakh”, Mat. sb., 87:4 (1972), 459–489

[4] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva analiticheskikh funktsii. II. Spektralnyi analiz na vypuklykh oblastyakh”, Mat. sb., 88:1 (1972), 3–30 | MR

[5] Krasichkov-Ternovskii I. F., “Odna geometricheskaya lemma, poleznaya v teorii tselykh funktsii, i teoremy tipa Levinsona”, Mat. zametki, 24:4 (1978), 531–546 | MR | Zbl

[6] Krivosheev A. S., “Fundamentalnyi printsip dlya invariantnykh podprostranstv v vypuklykh oblastyakh”, Izv. RAN. Ser. mat., 68:2 (2004), 71–136 | DOI | MR | Zbl

[7] Krivosheev A. S., “Pochti eksponentsialnyi bazis”, Ufimsk. mat. zh., 2:1 (2010), 87–96 | Zbl

[8] Krivosheev A. S., “Bazisy «po otnositelno malym gruppam»”, Ufimsk. mat. zh., 2:2 (2010), 67–89 | Zbl

[9] Krivosheev A. S., “Pochti eksponentsialnaya posledovatelnost eksponentsialnykh mnogochlenov”, Ufimsk. mat. zh., 4:1 (2012), 88–106

[10] Krivosheev A. S., Krivosheeva O. A., “Bazis v invariantnom podprostranstve analiticheskikh funktsii”, Mat. sb., 204:12 (2013), 49–104 | DOI | MR | Zbl

[11] Krivosheev A. S., Krivosheeva O. A., “Fundamentalnyi printsip i bazis v invariantnom podprostranstve”, Mat. zametki, 99:5 (2016), 684–697 | DOI | MR | Zbl

[12] Krivosheeva O. A., “Osobye tochki summy ryada eksponentsialnykh monomov na granitse oblasti skhodimosti”, Algebra i analiz, 23:2 (2011), 162–205

[13] Krivosheeva O. A., Krivosheev A. S., “Kriterii vypolneniya fundamentalnogo printsipa dlya invariantnykh podprostranstv v ogranichennykh vypuklykh oblastyakh kompleksnoi ploskosti”, Funkts. analiz i ego prilozh., 46:4 (2012), 14–30 | DOI | MR | Zbl

[14] Krivosheeva O. A., Krivosheev A. S., Rafikov A. I., “Otsenki snizu tselykh funktsii”, Ufimsk. mat. zh., 11:3 (2019), 46–62 | MR | Zbl

[15] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[16] Leontev A. F., Tselye funktsii. Ryady eksponent, Nauka, M., 1983 | MR