Nonlinear optics problem with~transformation of a spatial variable and an oblique derivative
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 276-288

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a functional differential equation of parabolic type on a strip with a transformation of a spatial variable and boundary conditions with an oblique derivative. Using the Laplace and Fourier transforms, we obtain a representation of the problem under consideration in the form of a nonlinear integral equation. A special case of this representation is considered. The proved statements make it possible to implement iterative methods for obtaining approximate solutions of nonlinear partial differential equations taking into account the given conditions. The results show that the presented method is promising for solving similar problems.
Keywords: functional differential equations, boundary conditions with an oblique derivative
Mots-clés : bifurcation, Fourier transform, Laplace transform.
@article{CMFD_2023_69_2_a6,
     author = {A. A. Kornuta and V. A. Lukianenko},
     title = {Nonlinear optics problem with~transformation of a spatial variable and an oblique derivative},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {276--288},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a6/}
}
TY  - JOUR
AU  - A. A. Kornuta
AU  - V. A. Lukianenko
TI  - Nonlinear optics problem with~transformation of a spatial variable and an oblique derivative
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 276
EP  - 288
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a6/
LA  - ru
ID  - CMFD_2023_69_2_a6
ER  - 
%0 Journal Article
%A A. A. Kornuta
%A V. A. Lukianenko
%T Nonlinear optics problem with~transformation of a spatial variable and an oblique derivative
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 276-288
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a6/
%G ru
%F CMFD_2023_69_2_a6
A. A. Kornuta; V. A. Lukianenko. Nonlinear optics problem with~transformation of a spatial variable and an oblique derivative. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 276-288. http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a6/