Nonlinear optics problem with~transformation of a spatial variable and an oblique derivative
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 276-288.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a functional differential equation of parabolic type on a strip with a transformation of a spatial variable and boundary conditions with an oblique derivative. Using the Laplace and Fourier transforms, we obtain a representation of the problem under consideration in the form of a nonlinear integral equation. A special case of this representation is considered. The proved statements make it possible to implement iterative methods for obtaining approximate solutions of nonlinear partial differential equations taking into account the given conditions. The results show that the presented method is promising for solving similar problems.
Keywords: functional differential equations, boundary conditions with an oblique derivative
Mots-clés : bifurcation, Fourier transform, Laplace transform.
@article{CMFD_2023_69_2_a6,
     author = {A. A. Kornuta and V. A. Lukianenko},
     title = {Nonlinear optics problem with~transformation of a spatial variable and an oblique derivative},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {276--288},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a6/}
}
TY  - JOUR
AU  - A. A. Kornuta
AU  - V. A. Lukianenko
TI  - Nonlinear optics problem with~transformation of a spatial variable and an oblique derivative
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 276
EP  - 288
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a6/
LA  - ru
ID  - CMFD_2023_69_2_a6
ER  - 
%0 Journal Article
%A A. A. Kornuta
%A V. A. Lukianenko
%T Nonlinear optics problem with~transformation of a spatial variable and an oblique derivative
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 276-288
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a6/
%G ru
%F CMFD_2023_69_2_a6
A. A. Kornuta; V. A. Lukianenko. Nonlinear optics problem with~transformation of a spatial variable and an oblique derivative. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 276-288. http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a6/

[1] Akhmanov S. A., Vorontsov M. A., Ivanov V. Yu., “Generatsiya struktur v opticheskikh sistemakh s dvumernoi obratnoi svyazyu: na puti k sozdaniyu nelineino-opticheskikh analogov neironnykh setei”, Novye printsipy opticheskoi obrabotki informatsii, Nauka, M., 1990, 263–325

[2] Belan E. P., “O vzaimodeistvii beguschikh voln v parabolicheskom funktsionalno-differentsialnom uravnenii”, Diff. uravn., 40:5 (2004), 645–654 | MR | Zbl

[3] Belan E. P., “O dinamike beguschikh voln v parabolicheskom uravnenii s preobrazovaniem sdviga prostranstvennoi peremennoi”, Zhurn. mat. fiz., anal., geom., 1:1 (2005), 3–34 | MR | Zbl

[4] Dech G., Rukovodstvo k prakticheskomu primeneniyu preobrazovaniya Laplasa i Z-preobrazovaniya, S pril. tabl., sost. R. Gershelem, Nauka, M., 1971

[5] Kornuta A. A., Lukyanenko V. A., “Funktsionalno-differentsialnye uravneniya parabolicheskogo tipa s operatorom involyutsii”, Dinam. sist., 9:4 (2019), 390–409 | Zbl

[6] Kornuta A. A., Lukyanenko V. A., “Dinamika reshenii nelineinykh funktsionalno-differentsialnykh uravnenii parabolicheskogo tipa”, Izv. vuzov. Prikl. nelin. dinam., 30:2 (2022), 132–151

[7] Krutitskii P. A., Chikilev A. V., “Metod uglovogo potentsiala v kraevykh zadachakh fiziki zamagnichennykh poluprovodnikov”, Preprinty IPM im. M. V. Keldysha, 2003, 072

[8] Kubyshkin E. P., Kulikov V. A., “Bifurkatsii avtokolebatelnykh reshenii nelineinogo parabolicheskogo uravneniya s povorotom prostranstvennogo argumenta i zapazdyvaniem”, Zhurn. vych. mat. i mat. fiz., 61:3 (2021), 428–449 | DOI | MR | Zbl

[9] Muravnik A. B., “Funktsionalno-differentsialnye parabolicheskie uravneniya: integralnye predstavleniya i kachestvennye svoistva reshenii zadachi Koshi”, Sovrem. mat. Fundam. napravl., 52 (2014), 3–141

[10] Nesenenko G. A., “Metod granichnykh integralnykh uravnenii v resheniyakh dvumernykh singulyarno vozmuschennykh zadach nestatsionarnoi teploprovodnosti s nelineinymi granichnymi usloviyami”, Diff. uravn., 36:9 (2000), 1160–1171 | MR | Zbl

[11] Razgulin A. V., Nelineinye modeli opticheskoi sinergetiki, MAKS Press, M., 2008

[12] Razgulin A. V., Romanenko T. E., “Vraschayuschiesya volny v parabolicheskom funktsionalno-differentsialnom uravnenii s povorotom prostranstvennogo argumenta i zapazdyvaniem”, Zhurn. vych. mat. i mat. fiz., 53:11 (2013), 1804–1821 | DOI | MR | Zbl

[13] Achmanov S. A., Vorontzov M. A., Ivanov V. Yu., Larichev A. V., Zeleznykh N. I., “Controlling transverse-wave interactions in nonlinear optics — generation and interaction of spatiotemporal structures”, J. Opt. Soc. Am. B. Opt. Phys., 9:1 (1992), 78–90 | DOI

[14] Budzinskiy S. S., Razgulin A. V., “Rotating and standing waves in a diffractive nonlinear optical system with delayed feedback under O(2) Hopf bifurcation”, Commun. Nonlinear Sci. Numer. Simul., 49 (2017), 17–29 | DOI | MR | Zbl

[15] Budzinskiy S. S., Razgulin A. V., “Pulsating and rotating spirals in a delayed feedback diffractive nonlinear optical system”, Internat. J. Bifur. Chaos. Appl. Sci. Engrg., 31:1 (2021), 2130002 | DOI | MR | Zbl

[16] Grigorieva E. V., Haken H., Kashchenko S. A., Pelster A., “Travelling wave dynamics in a nonlinear interferometer with spatial field transformer in feedback”, Phys. D, 125 (1999), 123–141 | DOI | Zbl

[17] Kornuta A. A., Lukianenko V. A., “Stable structures of nonlinear parabolic equations with transformation of spatial variables”, Lobachevskii J. Math., 42:5 (2021), 911–930 | DOI | MR | Zbl

[18] Kornuta A. A., Lukianenko V. A., “Stability of structures and asymptotics of nonlinear parabolic type equations solutions with transformation of arguments”, Lobachevskii J. Math., 42:14 (2021), 3468–3485 | DOI | MR | Zbl

[19] Kornuta A. A., Lukianenko V. A., “Scenarios of the behavior of solutions of a nonlinear functional-differential equation of parabolic type with transformation of arguments”, Int. Sci. Conf. “Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis” (Rostov-on-Don, 2021), 29

[20] Krutitskii P. A., Sgibnev A. I., “Integral-equation method in the mixed oblique derivative problem for harmonic functions outside cuts on the plane”, J. Math. Sci. (N. Y.), 151 (2008), 2710–2725 | DOI | MR | Zbl

[21] Kubyshkin E. P., Kulikov V. A., “Bifurcations of self-oscillatory solutions to a nonlinear parabolic equation with a rotating spatial argument and time delay”, Comput. Math. Math. Phys., 61:3 (2021), 403–423 | DOI | MR | Zbl

[22] Vorontzov M. A., Razgulin A. V., “Properties of global attractor in nonlinear optical system having nonlocal interactions”, Photonics and Optoelectronics, 1:2 (1993), 103–111