Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2023_69_2_a6, author = {A. A. Kornuta and V. A. Lukianenko}, title = {Nonlinear optics problem with~transformation of a spatial variable and an oblique derivative}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {276--288}, publisher = {mathdoc}, volume = {69}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a6/} }
TY - JOUR AU - A. A. Kornuta AU - V. A. Lukianenko TI - Nonlinear optics problem with~transformation of a spatial variable and an oblique derivative JO - Contemporary Mathematics. Fundamental Directions PY - 2023 SP - 276 EP - 288 VL - 69 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a6/ LA - ru ID - CMFD_2023_69_2_a6 ER -
%0 Journal Article %A A. A. Kornuta %A V. A. Lukianenko %T Nonlinear optics problem with~transformation of a spatial variable and an oblique derivative %J Contemporary Mathematics. Fundamental Directions %D 2023 %P 276-288 %V 69 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a6/ %G ru %F CMFD_2023_69_2_a6
A. A. Kornuta; V. A. Lukianenko. Nonlinear optics problem with~transformation of a spatial variable and an oblique derivative. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 276-288. http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a6/
[1] Akhmanov S. A., Vorontsov M. A., Ivanov V. Yu., “Generatsiya struktur v opticheskikh sistemakh s dvumernoi obratnoi svyazyu: na puti k sozdaniyu nelineino-opticheskikh analogov neironnykh setei”, Novye printsipy opticheskoi obrabotki informatsii, Nauka, M., 1990, 263–325
[2] Belan E. P., “O vzaimodeistvii beguschikh voln v parabolicheskom funktsionalno-differentsialnom uravnenii”, Diff. uravn., 40:5 (2004), 645–654 | MR | Zbl
[3] Belan E. P., “O dinamike beguschikh voln v parabolicheskom uravnenii s preobrazovaniem sdviga prostranstvennoi peremennoi”, Zhurn. mat. fiz., anal., geom., 1:1 (2005), 3–34 | MR | Zbl
[4] Dech G., Rukovodstvo k prakticheskomu primeneniyu preobrazovaniya Laplasa i Z-preobrazovaniya, S pril. tabl., sost. R. Gershelem, Nauka, M., 1971
[5] Kornuta A. A., Lukyanenko V. A., “Funktsionalno-differentsialnye uravneniya parabolicheskogo tipa s operatorom involyutsii”, Dinam. sist., 9:4 (2019), 390–409 | Zbl
[6] Kornuta A. A., Lukyanenko V. A., “Dinamika reshenii nelineinykh funktsionalno-differentsialnykh uravnenii parabolicheskogo tipa”, Izv. vuzov. Prikl. nelin. dinam., 30:2 (2022), 132–151
[7] Krutitskii P. A., Chikilev A. V., “Metod uglovogo potentsiala v kraevykh zadachakh fiziki zamagnichennykh poluprovodnikov”, Preprinty IPM im. M. V. Keldysha, 2003, 072
[8] Kubyshkin E. P., Kulikov V. A., “Bifurkatsii avtokolebatelnykh reshenii nelineinogo parabolicheskogo uravneniya s povorotom prostranstvennogo argumenta i zapazdyvaniem”, Zhurn. vych. mat. i mat. fiz., 61:3 (2021), 428–449 | DOI | MR | Zbl
[9] Muravnik A. B., “Funktsionalno-differentsialnye parabolicheskie uravneniya: integralnye predstavleniya i kachestvennye svoistva reshenii zadachi Koshi”, Sovrem. mat. Fundam. napravl., 52 (2014), 3–141
[10] Nesenenko G. A., “Metod granichnykh integralnykh uravnenii v resheniyakh dvumernykh singulyarno vozmuschennykh zadach nestatsionarnoi teploprovodnosti s nelineinymi granichnymi usloviyami”, Diff. uravn., 36:9 (2000), 1160–1171 | MR | Zbl
[11] Razgulin A. V., Nelineinye modeli opticheskoi sinergetiki, MAKS Press, M., 2008
[12] Razgulin A. V., Romanenko T. E., “Vraschayuschiesya volny v parabolicheskom funktsionalno-differentsialnom uravnenii s povorotom prostranstvennogo argumenta i zapazdyvaniem”, Zhurn. vych. mat. i mat. fiz., 53:11 (2013), 1804–1821 | DOI | MR | Zbl
[13] Achmanov S. A., Vorontzov M. A., Ivanov V. Yu., Larichev A. V., Zeleznykh N. I., “Controlling transverse-wave interactions in nonlinear optics — generation and interaction of spatiotemporal structures”, J. Opt. Soc. Am. B. Opt. Phys., 9:1 (1992), 78–90 | DOI
[14] Budzinskiy S. S., Razgulin A. V., “Rotating and standing waves in a diffractive nonlinear optical system with delayed feedback under O(2) Hopf bifurcation”, Commun. Nonlinear Sci. Numer. Simul., 49 (2017), 17–29 | DOI | MR | Zbl
[15] Budzinskiy S. S., Razgulin A. V., “Pulsating and rotating spirals in a delayed feedback diffractive nonlinear optical system”, Internat. J. Bifur. Chaos. Appl. Sci. Engrg., 31:1 (2021), 2130002 | DOI | MR | Zbl
[16] Grigorieva E. V., Haken H., Kashchenko S. A., Pelster A., “Travelling wave dynamics in a nonlinear interferometer with spatial field transformer in feedback”, Phys. D, 125 (1999), 123–141 | DOI | Zbl
[17] Kornuta A. A., Lukianenko V. A., “Stable structures of nonlinear parabolic equations with transformation of spatial variables”, Lobachevskii J. Math., 42:5 (2021), 911–930 | DOI | MR | Zbl
[18] Kornuta A. A., Lukianenko V. A., “Stability of structures and asymptotics of nonlinear parabolic type equations solutions with transformation of arguments”, Lobachevskii J. Math., 42:14 (2021), 3468–3485 | DOI | MR | Zbl
[19] Kornuta A. A., Lukianenko V. A., “Scenarios of the behavior of solutions of a nonlinear functional-differential equation of parabolic type with transformation of arguments”, Int. Sci. Conf. “Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis” (Rostov-on-Don, 2021), 29
[20] Krutitskii P. A., Sgibnev A. I., “Integral-equation method in the mixed oblique derivative problem for harmonic functions outside cuts on the plane”, J. Math. Sci. (N. Y.), 151 (2008), 2710–2725 | DOI | MR | Zbl
[21] Kubyshkin E. P., Kulikov V. A., “Bifurcations of self-oscillatory solutions to a nonlinear parabolic equation with a rotating spatial argument and time delay”, Comput. Math. Math. Phys., 61:3 (2021), 403–423 | DOI | MR | Zbl
[22] Vorontzov M. A., Razgulin A. V., “Properties of global attractor in nonlinear optical system having nonlocal interactions”, Photonics and Optoelectronics, 1:2 (1993), 103–111