A family of piecewise-smooth solutions of a class of spatially distributed equations
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 263-275.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a spatially distributed equation with a periodic boundary condition and the zero integral mean condition in the spatial variable. The boundary-value problem under consideration has a family of solutions that are piecewise constant with respect to the spatial variable and have one discontinuity point. Conditions for the stability of such solutions are determined. The existence of piecewise constant solutions with more than one discontinuity point is shown. An algorithm for calculating solutions to a boundary-value problem by numerical methods is presented. A numerical analysis of the dynamics of the boundary-value problem is performed.
Keywords: evolutionary spatially distributed equations, stability, cluster synchronization.
Mots-clés : piecewise constant solutions
@article{CMFD_2023_69_2_a5,
     author = {S. A. Kaschenko and D. S. Kosterin and S. D. Glyzin},
     title = {A family of piecewise-smooth solutions of a class of spatially distributed equations},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {263--275},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a5/}
}
TY  - JOUR
AU  - S. A. Kaschenko
AU  - D. S. Kosterin
AU  - S. D. Glyzin
TI  - A family of piecewise-smooth solutions of a class of spatially distributed equations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 263
EP  - 275
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a5/
LA  - ru
ID  - CMFD_2023_69_2_a5
ER  - 
%0 Journal Article
%A S. A. Kaschenko
%A D. S. Kosterin
%A S. D. Glyzin
%T A family of piecewise-smooth solutions of a class of spatially distributed equations
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 263-275
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a5/
%G ru
%F CMFD_2023_69_2_a5
S. A. Kaschenko; D. S. Kosterin; S. D. Glyzin. A family of piecewise-smooth solutions of a class of spatially distributed equations. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 263-275. http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a5/

[1] Glyzin D. S., Glyzin S. D., Kolesov A. Yu., “Okhota na khimer v polnosvyaznykh setyakh nelineinykh ostsillyatorov”, Izv. vuzov. Prikl. nelin. dinam., 30:2 (2022), 152–175

[2] Glyzin S. D., Kaschenko S. A., Tolbei A. O., “Vzaimodeistvie dvukh voln v modeli Fermi—Pasta—Ulama”, Model. i analiz inform. sist., 23:5 (2016), 548–558 | MR

[3] Glyzin S. D., Kaschenko S. A., Tolbei A. O., “Uravneniya s nelineinostyami dislokatsii i Fermi—Pasty—Ulama”, Izv. vuzov. Prikl. nelin. dinam., 27:4 (2019), 52–70

[4] Glyzin S. D., Kolesov A. Yu., “Periodicheskie rezhimy dvukhklasternoi sinkhronizatsii v polnosvyaznykh setyakh nelineinykh ostsillyatorov”, Teor. mat. fiz., 212:2 (2022), 213–233 | DOI | MR

[5] Grigoreva E. V., Kaschenko S. A., “Medlennye i bystrye kolebaniya v modeli optiko-elektronnogo ostsillyatora s zapazdyvaniem”, Dokl. RAN, 484:1 (2019), 21–25 | DOI

[6] Glyzin S. D., Kolesov A. Yu., “Beguschie volny v polnosvyaznykh setyakh nelineinykh ostsillyatorov”, Zhurn. vych. mat. i mat. fiz., 62:1 (2022), 71–89 | DOI | MR | Zbl

[7] Ikeda K., Matsumoto K., “High-dimensional chaotic behavior in systems with time-delayed feedback”, Phys. D, 29 (1987), 223–235 | DOI | Zbl

[8] Marquez B. A., “Interaction between Lienard and Ikeda dynamics in a nonlinear electro-optical oscillator with delayed bandpass feedback”, Phys. Rev. E, 94:6 (2016), 062208 | DOI

[9] Talla Mbe J. H., Talla A. F., Goune Chengui G. R., “Mixed-mode oscillations in slow-fast delayed optoelectronic systems”, Phys. Rev. E, 91:1 (2015), 012902 | DOI | MR