Mathematical expectation of the solution of a stochastic multiplicatively perturbed system of differential equations
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 250-262.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Cauchy problem for a first-order linear inhomogeneous system of partial differential equations with random processes as coefficients. Explicit formulas for the mathematical expectation of the solution are obtained. Examples of systems with Gaussian and uniformly distributed random coefficients are considered. An example of calculations for a simplified learning model at the microlevel is given.
Keywords: first-order systems of partial differential equations with random coefficients, mathematical expectation, variational derivative, characteristic functional.
@article{CMFD_2023_69_2_a4,
     author = {L. Yu. Kabantosva},
     title = {Mathematical expectation of the solution of a stochastic multiplicatively perturbed system of differential equations},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {250--262},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a4/}
}
TY  - JOUR
AU  - L. Yu. Kabantosva
TI  - Mathematical expectation of the solution of a stochastic multiplicatively perturbed system of differential equations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 250
EP  - 262
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a4/
LA  - ru
ID  - CMFD_2023_69_2_a4
ER  - 
%0 Journal Article
%A L. Yu. Kabantosva
%T Mathematical expectation of the solution of a stochastic multiplicatively perturbed system of differential equations
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 250-262
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a4/
%G ru
%F CMFD_2023_69_2_a4
L. Yu. Kabantosva. Mathematical expectation of the solution of a stochastic multiplicatively perturbed system of differential equations. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 250-262. http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a4/

[1] Zadorozhnii V. G., Metody variatsionnogo analiza, RKhD, M.—Izhevsk, 2006

[2] Zadorozhnii V. G., Kabantsova L. Yu., “O reshenii lineinykh sistem differentsialnykh uravnenii v chastnykh proizvodnykh pervogo poryadka”, Sovrem. mat. Fundam. napravl., 67, no. 3, 2021, 549–563

[3] Zadorozhnii V. G., Konovalova M. A., “Multiplikativno vozmuschennoe sluchainym shumom differentsialnoe uravnenie v banakhovom prostranstve”, Sovrem. mat. Fundam. napravl., 63, no. 4, 2017, 599–614

[4] Kapitsa S. P., Kurdyumov S. P., Malinetskii G. G., Sinergetika i prognozy buduschego, URSS, M., 2003 | MR

[5] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. II, Nauka, M., 1970

[6] Shilov G. E., Matematicheskii analiz. Vtoroi spetsialnyi kurs, Fizmatlit, M., 1965 | MR

[7] Zadorozhniy V. G., Semenov M. E., Selavesyuk N. T., Ulshin I. I., Nozhkin V. S., “Statistical characteristics of solutions of the system of the stochastic transfer model”, Math. Models Comput. Simul., 13:1 (2021), 11–25 | DOI | MR

[8] Akhromeeva T. S., “Higher education as an object of mathematical modeling”, Phystech J., 3:2 (1997), 115–145