Mathematical expectation of the solution of a stochastic multiplicatively perturbed system of differential equations
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 250-262
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Cauchy problem for a first-order linear inhomogeneous system of partial differential equations with random processes as coefficients. Explicit formulas for the mathematical expectation of the solution are obtained. Examples of systems with Gaussian and uniformly distributed random coefficients are considered. An example of calculations for a simplified learning model at the microlevel is given.
Keywords:
first-order systems of partial differential equations with random coefficients, mathematical expectation, variational derivative, characteristic functional.
@article{CMFD_2023_69_2_a4,
author = {L. Yu. Kabantosva},
title = {Mathematical expectation of the solution of a stochastic multiplicatively perturbed system of differential equations},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {250--262},
publisher = {mathdoc},
volume = {69},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a4/}
}
TY - JOUR AU - L. Yu. Kabantosva TI - Mathematical expectation of the solution of a stochastic multiplicatively perturbed system of differential equations JO - Contemporary Mathematics. Fundamental Directions PY - 2023 SP - 250 EP - 262 VL - 69 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a4/ LA - ru ID - CMFD_2023_69_2_a4 ER -
%0 Journal Article %A L. Yu. Kabantosva %T Mathematical expectation of the solution of a stochastic multiplicatively perturbed system of differential equations %J Contemporary Mathematics. Fundamental Directions %D 2023 %P 250-262 %V 69 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a4/ %G ru %F CMFD_2023_69_2_a4
L. Yu. Kabantosva. Mathematical expectation of the solution of a stochastic multiplicatively perturbed system of differential equations. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 250-262. http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a4/