Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2023_69_2_a3, author = {P. A. Zelenchuk and V. G. Tsybulin}, title = {Mathematical model of ideal free distribution in the predator--prey system}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {237--249}, publisher = {mathdoc}, volume = {69}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a3/} }
TY - JOUR AU - P. A. Zelenchuk AU - V. G. Tsybulin TI - Mathematical model of ideal free distribution in the predator--prey system JO - Contemporary Mathematics. Fundamental Directions PY - 2023 SP - 237 EP - 249 VL - 69 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a3/ LA - ru ID - CMFD_2023_69_2_a3 ER -
%0 Journal Article %A P. A. Zelenchuk %A V. G. Tsybulin %T Mathematical model of ideal free distribution in the predator--prey system %J Contemporary Mathematics. Fundamental Directions %D 2023 %P 237-249 %V 69 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a3/ %G ru %F CMFD_2023_69_2_a3
P. A. Zelenchuk; V. G. Tsybulin. Mathematical model of ideal free distribution in the predator--prey system. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 237-249. http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a3/
[1] Bazykin A. D., Nelineinaya dinamika vzaimodeistvuyuschikh populyatsii, Inst. komp. issl., Izhevsk, 2003
[2] Budyanskii A. V., Tsibulin V. G., “Modelirovanie mnogofaktornogo taksisa v sisteme «khischnik—zhertva»”, Biofizika, 64:2 (2019), 343–349 | DOI
[3] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR
[4] Zelenchuk P. A., Tsibulin V. G., “Idealnoe svobodnoe raspredelenie v modeli «khischnik—zhertva» pri mnogofaktornom taksise”, Biofizika, 66:3 (2021), 546–554 | DOI
[5] Myurrei Dzh. D., Matematicheskaya biologiya, v. 1, Inst. komp. issl., M.—Izhevsk, 2011
[6] Naife A., Vvedenie v metody vozmuschenii, Mir, M., 1984
[7] Riznichenko G. Yu., Matematicheskoe modelirovanie biologicheskikh protsessov. Modeli v biofizike i ekologii, Yurait, M., 2020
[8] Trubetskov D. I., “Fenomen matematicheskoi modeli Lotki—Volterry i skhodnykh s nei”, Izv. vuzov. Prikl. nelin. dinam., 19:2 (2011), 69–88
[9] Tyutyunov Yu. V., Titova L. I., “Ot Lotki—Volterra k Arditi—Ginzburgu: 90 let evolyutsii troficheskikh funktsii”, Zhurn. obsch. biol., 79:6 (2018), 428–448 | DOI
[10] Kha T. D., Tsibulin V. G., “Uravneniya diffuzii—reaktsii—advektsii dlya sistemy khischnik—zhertva v geterogennoi srede”, Komp. issl. i model., 13:6 (2021), 1161–1176
[11] Kha T. D., Tsibulin V. G., “Multistabilnost dlya matematicheskoi modeli dinamiki khischnikov i zhertv na neodnorodnom areale”, Sovrem. mat. Fundam. napravl., 68, no. 3, 2022, 509–521 | MR
[12] Tsibulin V. G., Kha T. D., Zelenchuk P. A., “Nelineinaya dinamika sistemy khischnik—zhertva na neodnorodnom areale i stsenarii lokalnogo vzaimodeistviya vidov”, Izv. vuzov. Prikl. nelin. dinam., 29:5 (2021), 751–764
[13] Averill I., Lou Y., Munther D., “On several conjectures from evolution of dispersal”, J. Biol. Dyn., 6:2 (2012), 117–130 | DOI | MR | Zbl
[14] Budyansky A. V., Frischmuth K., Tsybulin V. G., “Cosymmetry approach and mathematical modeling of species coexistence in a heterogeneous habitat”, Discrete Contin. Dyn. Syst., 24 (2019), 547–561 | MR | Zbl
[15] Cantrell R. S., Cosner C., “Evolutionary stability of ideal free dispersal under spatial heterogeneity and time periodicity”, Math. Biosci., 305 (2018), 71–76 | DOI | MR | Zbl
[16] Cantrell R. S., Cosner C., DeAngelis D. L., Padron V., “The ideal free distribution as an evolutionarily stable strategy”, J. Biol. Dyn., 1:3 (2007), 249–271 | DOI | MR | Zbl
[17] Cantrell R. S., Cosner C., Lou Y., “Evolution of dispersal and the ideal free distribution”, Math. Biosci. Engrg., 7:1 (2010), 17–36 | DOI | MR | Zbl
[18] Cantrell R. S., Cosner C., Martinez S., Torres N., “On a competitive system with ideal free dispersal”, J. Differ. Equ., 265 (2018), 3464–3493 | DOI | MR
[19] Cosner C., “Reaction–diffusion–advection models for the effects and evolution of dispersal”, Discrete Contin. Dyn. Syst. Ser. A, 34:5 (2014), 1701–745 | DOI | MR
[20] Cosner C., Cantrell R., Spatial ecology via reaction–diffusion equations, John Wiley Sons, Chichester, 2003 | MR | Zbl
[21] Cressman R., Garay G., Křivan V., “Ideal free distributions, evolutionary games, and population dynamics in multiple-species environments”, American Naturalist, 164:4 (2004), 473–489 | DOI
[22] Fretwell S. D., Lucas H. L., “On territorial behavior and other factors influencing habitat distribution in birds”, Acta Biotheoretica, 19 (1970), 16–36 | DOI
[23] Ha T. D., Tsybulin V. G., Zelenchuk P. A., How to model the local interaction in the predator–prey system at slow diffusion in a heterogeneous environment?, Ecol. Complexity, 52 (2022), 101026 | DOI
[24] Kacelnik A., Krebs J. R., Bernstein C., “The ideal free distribution and predator–prey populations”, Trends Ecol. Evol., 7 (1992), 50–55 | DOI
[25] Kim K., Choi W., “Local dynamics and coexistence of predator–prey model with directional dispersal of predator”, Math. Biosci. Engrg, 17 (2020), 6737–6755 | DOI | MR | Zbl
[26] Schwinning S., Rosenzweig M. L., “Periodic oscillations in an ideal-free predator–prey distribution”, OIKOS, 59 (1990), 85–91 | DOI
[27] Tyutyunov Y. V., Zagrebneva A. D., Azovsky A. I., “Spatiotemporal pattern formation in a prey–predator system: The case study of short-term interactions between diatom microalgae and microcrustaceans”, Mathematics, 8:7 (2020), 1065–1079 | DOI