Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2023_69_2_a11, author = {A. N. Soloviev and V. A. Chebanenko and M. S. Germanchuk}, title = {Applied theory of flexural vibrations of a piezoactive bimorph in the framework of an uncoupled boundary-value problem of thermoelectroelasticity}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {364--374}, publisher = {mathdoc}, volume = {69}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a11/} }
TY - JOUR AU - A. N. Soloviev AU - V. A. Chebanenko AU - M. S. Germanchuk TI - Applied theory of flexural vibrations of a piezoactive bimorph in the framework of an uncoupled boundary-value problem of thermoelectroelasticity JO - Contemporary Mathematics. Fundamental Directions PY - 2023 SP - 364 EP - 374 VL - 69 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a11/ LA - ru ID - CMFD_2023_69_2_a11 ER -
%0 Journal Article %A A. N. Soloviev %A V. A. Chebanenko %A M. S. Germanchuk %T Applied theory of flexural vibrations of a piezoactive bimorph in the framework of an uncoupled boundary-value problem of thermoelectroelasticity %J Contemporary Mathematics. Fundamental Directions %D 2023 %P 364-374 %V 69 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a11/ %G ru %F CMFD_2023_69_2_a11
A. N. Soloviev; V. A. Chebanenko; M. S. Germanchuk. Applied theory of flexural vibrations of a piezoactive bimorph in the framework of an uncoupled boundary-value problem of thermoelectroelasticity. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 364-374. http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a11/