Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2023_69_2_a11, author = {A. N. Soloviev and V. A. Chebanenko and M. S. Germanchuk}, title = {Applied theory of flexural vibrations of a piezoactive bimorph in the framework of an uncoupled boundary-value problem of thermoelectroelasticity}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {364--374}, publisher = {mathdoc}, volume = {69}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a11/} }
TY - JOUR AU - A. N. Soloviev AU - V. A. Chebanenko AU - M. S. Germanchuk TI - Applied theory of flexural vibrations of a piezoactive bimorph in the framework of an uncoupled boundary-value problem of thermoelectroelasticity JO - Contemporary Mathematics. Fundamental Directions PY - 2023 SP - 364 EP - 374 VL - 69 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a11/ LA - ru ID - CMFD_2023_69_2_a11 ER -
%0 Journal Article %A A. N. Soloviev %A V. A. Chebanenko %A M. S. Germanchuk %T Applied theory of flexural vibrations of a piezoactive bimorph in the framework of an uncoupled boundary-value problem of thermoelectroelasticity %J Contemporary Mathematics. Fundamental Directions %D 2023 %P 364-374 %V 69 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a11/ %G ru %F CMFD_2023_69_2_a11
A. N. Soloviev; V. A. Chebanenko; M. S. Germanchuk. Applied theory of flexural vibrations of a piezoactive bimorph in the framework of an uncoupled boundary-value problem of thermoelectroelasticity. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 364-374. http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a11/
[1] Bednarek S., “Elastic and magnetic properties of heat-shrinkable ferromagnetic composites with elastomer matrix”, Mater. Sci. Engrg. B, 77 (2000), 120–127 | DOI
[2] Binh D. T., Chebanenko V. A., Duong L. V., Kirillova E., Thang P. M., Soloviev A. N., “Applied theory of bending vibration of the piezoelectric and piezomagnetic bimorph”, J. Adv. Dielectrics, 10:3 (2020), 2050007 | DOI
[3] Du J. K., Wang J., Zhou Ya., “Thickness vibrations of a piezoelectric plate under biasing fields”, Ultrasonics, 44 (2006), 853–857
[4] Huang J., “Micromechanics determinations of thermoelectroelastic fields and effective thermoelectroelastic moduli of piezoelectric composites”, Mater. Sci. Engrg. B, 39 (1996), 163–172 | DOI
[5] Kulikov G. M., Mamontov A., Plotnikova S., “Coupled thermoelectroelastic stress analysis of piezoelectric shells”, Composite Structures, 124 (2015), 65–76 | DOI
[6] Levin V., “Exact relations between the effective thermoelectroelastic characteristics of piezoelectric composites”, Int. J. Engrg. Sci., 2013, 14–20 | DOI | MR | Zbl
[7] Levin V. M., Rakovskaja M. I., Kreher W. S., “The effective thermoelectroelastic properties of microinhomogeneous materials”, Int. J. Solids Structures, 36 (1999), 2683–2705 | DOI | Zbl
[8] Nowacki W., “Mathematical models of phenomenological piezoelectricity”, Banach Center Publ., 1, no. 15, 1985, 593–607 | DOI
[9] Pasternak I., Pasternak R., Sulym H., “A comprehensive study on Green's functions and boundary integral equations for 3D anisotropic thermomagnetoelectroelasticity”, Eng. Anal. Bound. Elem., 64 (2016), 222–229 | DOI | MR | Zbl
[10] Soloviev A. N., Chebanenko V. A., Oganesyan P. A., Chao S.-F., Liu Y.-M., “Applied theory for electro-elastic plates with non-homogeneous polarization”, Mater. Phys. Mech., 42:2 (2019), 242–255
[11] Xu K., Noor A. K., Tang Y. Y., “Three-dimensional solutions for coupled thermoelectroelastic response of multilayered plates”, Comput. Methods Appl. Mech. Engrg., 126:3-4 (1995), 355–371 | DOI
[12] Xu K., Noor A. K., Tang Y. Y., “Three-dimensional solutions for free vibrations of initially-stressed thermoelectroelastic multilayered plates”, Contemporary Research in Engineering Science, Springer, Berlin—Heidelberg, 1995, 593–612
[13] Zhang C., Cheung Y. K., Di S., Zhang N., “The exact solution of coupled thermoelectroelastic behavior of piezoelectric laminates”, Comput. Struct., 80 (2002), 1201–1212 | DOI
[14] Zhong X., Wu Y., Zhang K., “An extended dielectric crack model for fracture analysis of a thermopiezoelectric strip”, Acta Mech. Solida Sin., 33 (2020), 521–545 | DOI