Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2023_69_2_a10, author = {V. S. Rykhlov}, title = {Generalized initial-boundary problem for the wave equation with mixed derivative}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {342--363}, publisher = {mathdoc}, volume = {69}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a10/} }
TY - JOUR AU - V. S. Rykhlov TI - Generalized initial-boundary problem for the wave equation with mixed derivative JO - Contemporary Mathematics. Fundamental Directions PY - 2023 SP - 342 EP - 363 VL - 69 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a10/ LA - ru ID - CMFD_2023_69_2_a10 ER -
V. S. Rykhlov. Generalized initial-boundary problem for the wave equation with mixed derivative. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 342-363. http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a10/
[1] Burlutskaya M. Sh., Khromov A. P., “Rezolventnyi podkhod v metode Fure”, Dokl. RAN, 458:2 (2014), 138–140 | DOI | MR | Zbl
[2] Burlutskaya M. Sh., Khromov A. P., “Rezolventnyi podkhod dlya volnovogo uravneniya”, Zhurn. vych. mat. i mat. fiz., 55:2 (2015), 229–241 | DOI | MR | Zbl
[3] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR
[4] Lomov I. S., “Postroenie obobschennogo resheniya smeshannoi zadachi dlya telegrafnogo uravneniya: sekventsialnyi i aksiomaticheskii podkhody”, Diff. uravn., 58:11 (2022), 1471–1483 | Zbl
[5] Lomov I. S., “Novyi metod postroeniya obobschennogo resheniya smeshannoi zadachi dlya telegrafnogo uravneniya”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. mat. i kibern., 2022, no. 3, 33–40
[6] Lomovtsev F. E., “Globalnaya teorema korrektnosti pervoi smeshannoi zadachi dlya obschego telegrafnogo uravneniya s peremennymi koeffitsientami na otrezke”, Probl. fiz., mat. i tekhn., 2022, no. 1, 62–73
[7] Markushevich A. I., Teoriya analiticheskikh funktsii, v. 1, Nachala teorii, Nauka, M., 1967 | MR
[8] Muravei L. A., Petrov V. M., Romanenkov A. M., “O zadache gasheniya poperechnykh kolebanii prodolno dvizhuscheisya struny”, Vestn. Mordov. un-ta, 28:4 (2018), 472–485
[9] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969
[10] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR
[11] Rykhlov V. S., “Razreshimost smeshannoi zadachi dlya giperbolicheskogo uravneniya s raspadayuschimisya kraevymi usloviyami pri otsutstvii polnoty sobstvennykh funktsii”, Itogi nauki i tekhn. Sovrem. mat. i ee pril., 204, 2022, 124–134 | DOI
[12] Rykhlov V. S., “Reshenie nachalno-granichnoi zadachi dlya uravneniya giperbolicheskogo tipa so smeshannoi proizvodnoi”, Sovremennye problemy teorii funktsii i ikh prilozheniya, materialy 21-i mezhd. Saratovskoi zimnei shkoly, Saratov. univ., Saratov, 2022, 252–255
[13] Rykhlov V. S., “O reshenii nachalno-granichnoi zadachi dlya giperbolicheskogo uravneniya so smeshannoi proizvodnoi”, Sovremennye metody teorii kraevykh zadach, materialy mezhd. konf. “Pontryaginskie chteniya XXXIII”, VGU, Voronezh, 2022, 237–240
[14] Tolstov G. P., “O vtoroi smeshannoi proizvodnoi”, Mat. sb., 24:1 (1949), 27–51
[15] Khardi G., Raskhodyaschiesya ryady, Inostr. lit., M., 1951
[16] Khromov A. P., “Povedenie formalnogo resheniya smeshannoi zadachi dlya volnovogo uravneniya”, Zhurn. vych. mat. i mat. fiz., 56:2 (2016), 239–251 | DOI | MR | Zbl
[17] Khromov A. P., “Raskhodyaschiesya ryady i funktsionalnye uravneniya, svyazannye s analogami geometricheskoi progressii”, Sovremennye metody teorii kraevykh zadach, materialy mezhd. konf. “Pontryaginskie chteniya XXX”, VGU, Voronezh, 2019, 291–300
[18] Khromov A. P., “O klassicheskom reshenii smeshannoi zadachi dlya odnorodnogo volnovogo uravneniya s zakreplennymi kontsami i nulevoi nachalnoi skorostyu”, Izv. Sarat. un-ta. Nov. ser. Ser. Mat. Mekh. Inf., 19:3 (2019), 280–288 | MR | Zbl
[19] Khromov A. P., “Raskhodyaschiesya ryady i smeshannaya zadacha dlya volnovogo uravneniya”, Matematika. Mekhanika, 21, Saratov. univ., Saratov, 2019, 62–67
[20] Khromov A. P., “Raskhodyaschiesya ryady i metod Fure dlya volnovogo uravneniya”, Sovremennye problemy teorii funktsii i ikh prilozheniya, materialy 20-i mezhd. Saratovskoi zimnei shkoly, Nauchnaya kniga, Saratov, 2020, 433–439
[21] Khromov A. P., Kornev V. V., “Raskhodyaschiesya ryady v metode Fure dlya volnovogo uravneniya”, Tr. Inst. Mat. Mekh. UrO RAN, 27, no. 4, 2021, 215–238
[22] Khromov A. P., “Raskhodyaschiesya ryady i obobschennaya smeshannaya zadacha dlya volnovogo uravneniya”, Sovremennye problemy teorii funktsii i ikh prilozheniya, materialy 21-i mezhd. Saratovskoi zimnei shkoly, Saratov. univ., Saratov, 2022, 319–324
[23] Khromov A. P., “Raskhodyaschiesya ryady i obobschennaya smeshannaya zadacha dlya volnovogo uravneniya prosteishego vida”, Izv. Sarat. un-ta. Nov. ser. Ser. Mat. Mekh. Inf., 22:3 (2022), 322–331 | MR | Zbl
[24] Eiler L., Differentsialnoe ischislenie, GITTL, M.–L., 1949
[25] Archibald F. R., Emslie A. G., “The vibration of a string having a uniform motion along its length”, J. Appl. Mech., 25:1 (1958), 347–348 | DOI | Zbl
[26] Mahalingam S., “Transverse vibrations of power transmission chains”, British J. Appl. Phys., 8:4 (1957), 145–148 | DOI
[27] Sack R. A., “Transverse oscillations in traveling strings”, British J. Appl. Phys., 5:6 (1954), 224–226 | DOI