Generalized initial-boundary problem for the wave equation with mixed derivative
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 342-363.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an initial-boundary problem for a second-order inhomogeneous hyperbolic equation in a half-strip of the plane containing a mixed derivative with constant coefficients and zero or nonzero potential. This equation is the equation of transverse oscillations of a moving finite string. The case of zero initial velocity and fixed ends (Dirichlet conditions) is considered. It is assumed that the roots of the characteristic equation are simple and lie on the real axis on opposite sides of the origin. The classical solution of the initial-boundary problem is determined. In the case of zero potential, a uniqueness theorem for the classical solution is formulated and a formula for the solution is given in the form of a series consisting of contour integrals containing the initial data of the problem. Based on this formula, the concepts of a generalized initial-boundary value problem and a generalized solution are introduced. The main theorems on finite formulas for the generalized solution in the case of homogeneous and inhomogeneous problems are formulated. To prove these theorems, we apply an approach that uses the theory of divergent series in the sense of Euler, proposed by A. P. Khromov (axiomatic approach). Using this approach, on the basis of formulas for solutions in the form of a series, the formulated main theorems are proved. Further, as an application of the main theorems obtained, we prove a theorem on the existence and uniqueness of a generalized solution of the initial-boundary problem in the presence of a nonzero summable potential and give a formula for the solution in the form of an exponentially convergent series.
Keywords: initial boundary value problem, hyperbolic equation, wave equation, partial differential equation, half-strip, mixed derivative in the equation, potential of the general form, generalized solution.
@article{CMFD_2023_69_2_a10,
     author = {V. S. Rykhlov},
     title = {Generalized initial-boundary problem for the wave equation with mixed derivative},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {342--363},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a10/}
}
TY  - JOUR
AU  - V. S. Rykhlov
TI  - Generalized initial-boundary problem for the wave equation with mixed derivative
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 342
EP  - 363
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a10/
LA  - ru
ID  - CMFD_2023_69_2_a10
ER  - 
%0 Journal Article
%A V. S. Rykhlov
%T Generalized initial-boundary problem for the wave equation with mixed derivative
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 342-363
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a10/
%G ru
%F CMFD_2023_69_2_a10
V. S. Rykhlov. Generalized initial-boundary problem for the wave equation with mixed derivative. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 342-363. http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a10/

[1] Burlutskaya M. Sh., Khromov A. P., “Rezolventnyi podkhod v metode Fure”, Dokl. RAN, 458:2 (2014), 138–140 | DOI | MR | Zbl

[2] Burlutskaya M. Sh., Khromov A. P., “Rezolventnyi podkhod dlya volnovogo uravneniya”, Zhurn. vych. mat. i mat. fiz., 55:2 (2015), 229–241 | DOI | MR | Zbl

[3] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR

[4] Lomov I. S., “Postroenie obobschennogo resheniya smeshannoi zadachi dlya telegrafnogo uravneniya: sekventsialnyi i aksiomaticheskii podkhody”, Diff. uravn., 58:11 (2022), 1471–1483 | Zbl

[5] Lomov I. S., “Novyi metod postroeniya obobschennogo resheniya smeshannoi zadachi dlya telegrafnogo uravneniya”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. mat. i kibern., 2022, no. 3, 33–40

[6] Lomovtsev F. E., “Globalnaya teorema korrektnosti pervoi smeshannoi zadachi dlya obschego telegrafnogo uravneniya s peremennymi koeffitsientami na otrezke”, Probl. fiz., mat. i tekhn., 2022, no. 1, 62–73

[7] Markushevich A. I., Teoriya analiticheskikh funktsii, v. 1, Nachala teorii, Nauka, M., 1967 | MR

[8] Muravei L. A., Petrov V. M., Romanenkov A. M., “O zadache gasheniya poperechnykh kolebanii prodolno dvizhuscheisya struny”, Vestn. Mordov. un-ta, 28:4 (2018), 472–485

[9] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969

[10] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR

[11] Rykhlov V. S., “Razreshimost smeshannoi zadachi dlya giperbolicheskogo uravneniya s raspadayuschimisya kraevymi usloviyami pri otsutstvii polnoty sobstvennykh funktsii”, Itogi nauki i tekhn. Sovrem. mat. i ee pril., 204, 2022, 124–134 | DOI

[12] Rykhlov V. S., “Reshenie nachalno-granichnoi zadachi dlya uravneniya giperbolicheskogo tipa so smeshannoi proizvodnoi”, Sovremennye problemy teorii funktsii i ikh prilozheniya, materialy 21-i mezhd. Saratovskoi zimnei shkoly, Saratov. univ., Saratov, 2022, 252–255

[13] Rykhlov V. S., “O reshenii nachalno-granichnoi zadachi dlya giperbolicheskogo uravneniya so smeshannoi proizvodnoi”, Sovremennye metody teorii kraevykh zadach, materialy mezhd. konf. “Pontryaginskie chteniya XXXIII”, VGU, Voronezh, 2022, 237–240

[14] Tolstov G. P., “O vtoroi smeshannoi proizvodnoi”, Mat. sb., 24:1 (1949), 27–51

[15] Khardi G., Raskhodyaschiesya ryady, Inostr. lit., M., 1951

[16] Khromov A. P., “Povedenie formalnogo resheniya smeshannoi zadachi dlya volnovogo uravneniya”, Zhurn. vych. mat. i mat. fiz., 56:2 (2016), 239–251 | DOI | MR | Zbl

[17] Khromov A. P., “Raskhodyaschiesya ryady i funktsionalnye uravneniya, svyazannye s analogami geometricheskoi progressii”, Sovremennye metody teorii kraevykh zadach, materialy mezhd. konf. “Pontryaginskie chteniya XXX”, VGU, Voronezh, 2019, 291–300

[18] Khromov A. P., “O klassicheskom reshenii smeshannoi zadachi dlya odnorodnogo volnovogo uravneniya s zakreplennymi kontsami i nulevoi nachalnoi skorostyu”, Izv. Sarat. un-ta. Nov. ser. Ser. Mat. Mekh. Inf., 19:3 (2019), 280–288 | MR | Zbl

[19] Khromov A. P., “Raskhodyaschiesya ryady i smeshannaya zadacha dlya volnovogo uravneniya”, Matematika. Mekhanika, 21, Saratov. univ., Saratov, 2019, 62–67

[20] Khromov A. P., “Raskhodyaschiesya ryady i metod Fure dlya volnovogo uravneniya”, Sovremennye problemy teorii funktsii i ikh prilozheniya, materialy 20-i mezhd. Saratovskoi zimnei shkoly, Nauchnaya kniga, Saratov, 2020, 433–439

[21] Khromov A. P., Kornev V. V., “Raskhodyaschiesya ryady v metode Fure dlya volnovogo uravneniya”, Tr. Inst. Mat. Mekh. UrO RAN, 27, no. 4, 2021, 215–238

[22] Khromov A. P., “Raskhodyaschiesya ryady i obobschennaya smeshannaya zadacha dlya volnovogo uravneniya”, Sovremennye problemy teorii funktsii i ikh prilozheniya, materialy 21-i mezhd. Saratovskoi zimnei shkoly, Saratov. univ., Saratov, 2022, 319–324

[23] Khromov A. P., “Raskhodyaschiesya ryady i obobschennaya smeshannaya zadacha dlya volnovogo uravneniya prosteishego vida”, Izv. Sarat. un-ta. Nov. ser. Ser. Mat. Mekh. Inf., 22:3 (2022), 322–331 | MR | Zbl

[24] Eiler L., Differentsialnoe ischislenie, GITTL, M.–L., 1949

[25] Archibald F. R., Emslie A. G., “The vibration of a string having a uniform motion along its length”, J. Appl. Mech., 25:1 (1958), 347–348 | DOI | Zbl

[26] Mahalingam S., “Transverse vibrations of power transmission chains”, British J. Appl. Phys., 8:4 (1957), 145–148 | DOI

[27] Sack R. A., “Transverse oscillations in traveling strings”, British J. Appl. Phys., 5:6 (1954), 224–226 | DOI