Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2023_69_2_a1, author = {S. I. Bezrodnykh and S. V. Pikulin}, title = {Numerical-analytical method for the {Burgers} equation with a periodic boundary condition}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {208--223}, publisher = {mathdoc}, volume = {69}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a1/} }
TY - JOUR AU - S. I. Bezrodnykh AU - S. V. Pikulin TI - Numerical-analytical method for the Burgers equation with a periodic boundary condition JO - Contemporary Mathematics. Fundamental Directions PY - 2023 SP - 208 EP - 223 VL - 69 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a1/ LA - ru ID - CMFD_2023_69_2_a1 ER -
%0 Journal Article %A S. I. Bezrodnykh %A S. V. Pikulin %T Numerical-analytical method for the Burgers equation with a periodic boundary condition %J Contemporary Mathematics. Fundamental Directions %D 2023 %P 208-223 %V 69 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a1/ %G ru %F CMFD_2023_69_2_a1
S. I. Bezrodnykh; S. V. Pikulin. Numerical-analytical method for the Burgers equation with a periodic boundary condition. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 208-223. http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a1/
[1] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Binom, M., 2011 | MR
[2] Bezrodnykh S. I., Vlasov V. I., “Analitiko-chislennyi metod rascheta vzaimodeistviya fizicheskikh polei v poluprovodnikovom diode”, Mat. model., 27:7 (2015), 15–24 | MR | Zbl
[3] Vabischevich P. N., Vasileva M. V., “Yavno-neyavnye skhemy dlya zadach konvektsii—diffuzii—reaktsii”, Sib. zh. vych. mat., 15:4 (2012), 359–369
[4] Lizorkin P. I., Kurs differentsialnykh i integralnykh uravnenii s dopolnitelnymi glavami analiza, FML, M., 1981
[5] Novikov B. K., “Tochnye resheniya uravneniya Byurgersa”, Akust. zh., 24:4 (1978), 577–581
[6] Pikulin S. V., “O resheniyakh tipa beguschei volny uravneniya Kolmogorova—Petrovskogo—Piskunova”, Zhurn. vych. mat. i mat. fiz., 58:2 (2018), 244–252 | DOI | MR | Zbl
[7] Rudenko O. V., Soluyan S. I., Teoreticheskie osnovy nelineinoi akustiki, Nauka, M., 1975 | MR
[8] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989
[9] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya zadach konvektsii—diffuzii, Librokom, M., 2015
[10] Soluyan S. I., Khokhlov R. V., “Rasprostranenie akusticheskikh voln konechnoi amplitudy v dissipativnoi srede”, Vestn. MGU. Ser. 3. Fiz. Astron., 1961, no. 3, 52–61
[11] Uizem Dzh. B., Lineinye i nelineinye volny, Mir, M., 1977
[12] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR
[13] Ablowitz M., Zeppetella A., “Explicit solutions of Fisher's equation for a special wave speed”, Bull. Math. Biol., 41:6 (1979), 835–840 | DOI | MR | Zbl
[14] Ascher U. M., Ruuth S. J., Wetton B. T. R., “Implicit-explicit methods for time-dependent partial differential equations”, SIAM J. Numer. Anal., 32 (1995), 797–823 | DOI | MR | Zbl
[15] Crank J., Nicolson P., “A practical method for numerical evaluation of solutions of partial differential equations of the heatconduction type”, Math. Proc. Cambridge Philos. Soc., 49 (1947), 50–67 | DOI | MR
[16] Ruuth S. J., “Implicit-explicit methods for reaction–diffusion problems in pattern formation”, J. Math. Biol., 34:2 (1995), 148–176 | DOI | MR | Zbl