Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2023_69_2_a1, author = {S. I. Bezrodnykh and S. V. Pikulin}, title = {Numerical-analytical method for the {Burgers} equation with a periodic boundary condition}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {208--223}, publisher = {mathdoc}, volume = {69}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a1/} }
TY - JOUR AU - S. I. Bezrodnykh AU - S. V. Pikulin TI - Numerical-analytical method for the Burgers equation with a periodic boundary condition JO - Contemporary Mathematics. Fundamental Directions PY - 2023 SP - 208 EP - 223 VL - 69 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a1/ LA - ru ID - CMFD_2023_69_2_a1 ER -
%0 Journal Article %A S. I. Bezrodnykh %A S. V. Pikulin %T Numerical-analytical method for the Burgers equation with a periodic boundary condition %J Contemporary Mathematics. Fundamental Directions %D 2023 %P 208-223 %V 69 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a1/ %G ru %F CMFD_2023_69_2_a1
S. I. Bezrodnykh; S. V. Pikulin. Numerical-analytical method for the Burgers equation with a periodic boundary condition. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 208-223. http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a1/