Numerical-analytical method for the Burgers equation with a periodic boundary condition
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 208-223.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an efficient numerical-analytical method for solving the initial-boundary value problem for the Burgers equation on a segment with a periodic boundary condition. The method includes the reduction to a linear problem based on an explicit-implicit time discretization scheme and an analytical solution of an auxiliary linear problem at each time step using the explicit form of the corresponding Green's function. The efficiency of the constructed method is due to the fact that the algorithm for solving the auxiliary problem has only linear complexity in terms of the number of spatial discretization nodes used, without involving difference approximations of the derivatives of the desired function. On the basis of the Cole—Hopf substitution, we obtain an explicit periodic solution of the problem on the interval and compare the results of the numerical implementation of the constructed algorithm with this explicit solution. The developed method demonstrated a combination of high computational efficiency and accuracy of the result.
Keywords: Burgers equation, numerical-analytical method, Green's function
Mots-clés : explicit-implicit scheme.
@article{CMFD_2023_69_2_a1,
     author = {S. I. Bezrodnykh and S. V. Pikulin},
     title = {Numerical-analytical method for the {Burgers} equation with a periodic boundary condition},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {208--223},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a1/}
}
TY  - JOUR
AU  - S. I. Bezrodnykh
AU  - S. V. Pikulin
TI  - Numerical-analytical method for the Burgers equation with a periodic boundary condition
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 208
EP  - 223
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a1/
LA  - ru
ID  - CMFD_2023_69_2_a1
ER  - 
%0 Journal Article
%A S. I. Bezrodnykh
%A S. V. Pikulin
%T Numerical-analytical method for the Burgers equation with a periodic boundary condition
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 208-223
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a1/
%G ru
%F CMFD_2023_69_2_a1
S. I. Bezrodnykh; S. V. Pikulin. Numerical-analytical method for the Burgers equation with a periodic boundary condition. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 208-223. http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a1/

[1] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Binom, M., 2011 | MR

[2] Bezrodnykh S. I., Vlasov V. I., “Analitiko-chislennyi metod rascheta vzaimodeistviya fizicheskikh polei v poluprovodnikovom diode”, Mat. model., 27:7 (2015), 15–24 | MR | Zbl

[3] Vabischevich P. N., Vasileva M. V., “Yavno-neyavnye skhemy dlya zadach konvektsii—diffuzii—reaktsii”, Sib. zh. vych. mat., 15:4 (2012), 359–369

[4] Lizorkin P. I., Kurs differentsialnykh i integralnykh uravnenii s dopolnitelnymi glavami analiza, FML, M., 1981

[5] Novikov B. K., “Tochnye resheniya uravneniya Byurgersa”, Akust. zh., 24:4 (1978), 577–581

[6] Pikulin S. V., “O resheniyakh tipa beguschei volny uravneniya Kolmogorova—Petrovskogo—Piskunova”, Zhurn. vych. mat. i mat. fiz., 58:2 (2018), 244–252 | DOI | MR | Zbl

[7] Rudenko O. V., Soluyan S. I., Teoreticheskie osnovy nelineinoi akustiki, Nauka, M., 1975 | MR

[8] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989

[9] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya zadach konvektsii—diffuzii, Librokom, M., 2015

[10] Soluyan S. I., Khokhlov R. V., “Rasprostranenie akusticheskikh voln konechnoi amplitudy v dissipativnoi srede”, Vestn. MGU. Ser. 3. Fiz. Astron., 1961, no. 3, 52–61

[11] Uizem Dzh. B., Lineinye i nelineinye volny, Mir, M., 1977

[12] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR

[13] Ablowitz M., Zeppetella A., “Explicit solutions of Fisher's equation for a special wave speed”, Bull. Math. Biol., 41:6 (1979), 835–840 | DOI | MR | Zbl

[14] Ascher U. M., Ruuth S. J., Wetton B. T. R., “Implicit-explicit methods for time-dependent partial differential equations”, SIAM J. Numer. Anal., 32 (1995), 797–823 | DOI | MR | Zbl

[15] Crank J., Nicolson P., “A practical method for numerical evaluation of solutions of partial differential equations of the heatconduction type”, Math. Proc. Cambridge Philos. Soc., 49 (1947), 50–67 | DOI | MR

[16] Ruuth S. J., “Implicit-explicit methods for reaction–diffusion problems in pattern formation”, J. Math. Biol., 34:2 (1995), 148–176 | DOI | MR | Zbl