$L^2$-estimates of error in homogenization of parabolic equations with correctors taken into account
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 1, pp. 134-151
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider second-order parabolic equations with bounded measurable $\varepsilon$-periodic coefficients. To solve the Cauchy problem in the layer $\mathbb{R}^d\times(0,T)$ with the nonhomogeneous equation, we obtain approximations in the norm $\|\cdot\|_{L^2(\mathbb{R}^d\times(0,T))}$ with remainder of order $\varepsilon^2$ as $\varepsilon\to 0.$
Mots-clés :
parabolic equations
Keywords: homogenization of solutions, homogenization error, corrector.
Keywords: homogenization of solutions, homogenization error, corrector.
@article{CMFD_2023_69_1_a8,
author = {S. E. Pastukhova},
title = {$L^2$-estimates of error in homogenization of parabolic equations with correctors taken into account},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {134--151},
publisher = {mathdoc},
volume = {69},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a8/}
}
TY - JOUR AU - S. E. Pastukhova TI - $L^2$-estimates of error in homogenization of parabolic equations with correctors taken into account JO - Contemporary Mathematics. Fundamental Directions PY - 2023 SP - 134 EP - 151 VL - 69 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a8/ LA - ru ID - CMFD_2023_69_1_a8 ER -
%0 Journal Article %A S. E. Pastukhova %T $L^2$-estimates of error in homogenization of parabolic equations with correctors taken into account %J Contemporary Mathematics. Fundamental Directions %D 2023 %P 134-151 %V 69 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a8/ %G ru %F CMFD_2023_69_1_a8
S. E. Pastukhova. $L^2$-estimates of error in homogenization of parabolic equations with correctors taken into account. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 1, pp. 134-151. http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a8/