$L^2$-estimates of error in homogenization of parabolic equations with correctors taken into account
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 1, pp. 134-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider second-order parabolic equations with bounded measurable $\varepsilon$-periodic coefficients. To solve the Cauchy problem in the layer $\mathbb{R}^d\times(0,T)$ with the nonhomogeneous equation, we obtain approximations in the norm $\|\cdot\|_{L^2(\mathbb{R}^d\times(0,T))}$ with remainder of order $\varepsilon^2$ as $\varepsilon\to 0.$
Mots-clés : parabolic equations
Keywords: homogenization of solutions, homogenization error, corrector.
@article{CMFD_2023_69_1_a8,
     author = {S. E. Pastukhova},
     title = {$L^2$-estimates of error in homogenization of parabolic equations with correctors taken into account},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {134--151},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a8/}
}
TY  - JOUR
AU  - S. E. Pastukhova
TI  - $L^2$-estimates of error in homogenization of parabolic equations with correctors taken into account
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 134
EP  - 151
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a8/
LA  - ru
ID  - CMFD_2023_69_1_a8
ER  - 
%0 Journal Article
%A S. E. Pastukhova
%T $L^2$-estimates of error in homogenization of parabolic equations with correctors taken into account
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 134-151
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a8/
%G ru
%F CMFD_2023_69_1_a8
S. E. Pastukhova. $L^2$-estimates of error in homogenization of parabolic equations with correctors taken into account. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 1, pp. 134-151. http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a8/

[1] Bakhvalov N. S., “Osrednenie differentsialnykh uravnenii s chastnymi proizvodnymi s bystro ostsilliruyuschimi koeffitsientami”, Dokl. AN SSSR, 221:3 (1975), 516–519 | MR | Zbl

[2] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh. Matematicheskie zadachi mekhaniki kompozitsionnykh materialov, Nauka, M., 1984

[3] Birman M. Sh., Suslina T. A., “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva usredneniya”, Algebra i analiz, 15:3 (2003), 1–108

[4] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh ellipticheskikh differentsialnykh operatorov s uchetom korrektora”, Algebra i analiz, 17:6 (2005), 1–104

[5] Vasilevskaya E. S., “Usrednenie parabolicheskoi zadachi Koshi s periodicheskimi koeffitsientami pri uchete korrektora”, Algebra i analiz, 21:1 (2009), 3–60 | MR

[6] Vasilevskaya E. S., Suslina T. A., “Usrednenie parabolicheskikh i ellipticheskikh periodicheskikh operatorov v $L_2(\mathbb{R}^d)$ pri uchete pervogo i vtorogo korrektorov”, Algebra i analiz, 24:2 (2012), 1–103 | MR

[7] Zhikov V. V., “Spektralnyi podkhod k asimptoticheskim zadacham diffuzii”, Diff. uravn., 25:1 (1989), 44–50 | MR | Zbl

[8] Zhikov V. V., “Ob operatornykh otsenkakh v teorii usredneniya”, Dokl. RAN, 403:3 (2005), 305–308 | MR | Zbl

[9] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993

[10] Zhikov V. V., Pastukhova S. E., “Ob operatornykh otsenkakh v teorii usredneniya”, Usp. mat. nauk, 71:3 (2016), 3–98 | MR

[11] Meshkova Yu. M., Suslina T. A., “Usrednenie pervoi nachalno-kraevoi zadachi dlya parabolicheskikh sistem: operatornye otsenki pogreshnosti”, Algebra i analiz, 29:9 (2017), 99–158 | MR

[12] Miloslova A. A., Suslina T. A., “Usrednenie parabolicheskikh uravnenii vysokogo poryadka s periodicheskimi koeffitsientami”, Sovr. mat. Fundam. napravl., 67, no. 1 (2021), 130–191 | MR

[13] Pastukhova S. E., “Approksimatsiya eksponenty operatora diffuzii s mnogomasshtabnymi koeffitsientami”, Funkts. analiz i ego prilozh., 48:3 (2014), 34–51 | DOI | MR | Zbl

[14] Pastukhova S. E., “$L^2$-approksimatsii rezolventy ellipticheskogo operatora v perforirovannom prostranstve”, Sovr. mat. Fundam. napravl., 66, no. 2 (2020), 314–334

[15] Pastukhova S. E., “Uluchshennye $L^2$-approksimatsii rezolventy v usrednenii operatorov chetvertogo poryadka”, Algebra i analiz, 34:4 (2022), 74–106

[16] Pastukhova S. E., “Ob uluchshennykh approksimatsiyakh rezolventy v usrednenii operatorov vtorogo poryadka s periodicheskimi koeffitsientami”, Funkts. analiz i ego prilozh., 56:4 (2022), 93–104 | DOI

[17] Pastukhova S. E., Tikhomirov R. N., “Otsenki lokalno periodicheskogo i povtornogo usredneniya: parabolicheskie uravneniya”, Dokl. RAN, 428:2 (2009), 166–170 | Zbl

[18] Senik N. N., “Ob usrednenii nesamosopryazhennykh lokalno periodicheskikh ellipticheskikh operatorov”, Funkts. analiz i ego prilozh., 51, no. 2 (2017), 92–96 | DOI | Zbl

[19] Suslina T. A., “Ob usrednenii periodicheskikh parabolicheskikh sistem”, Funkts. analiz i ego prilozh., 38, no. 4 (2004), 86–90 | DOI | Zbl

[20] Bensoussan A., Lions J. L., Papanicolaou G., Asymptotic analysis for periodic structures, North Holland Publishing Co., Amsterdam—New York, 1978 | MR | Zbl

[21] Geng J., Shen Z., “Convergence rates in parabolic homogenization with time-dependent periodic coefficients”, J. Funct. Anal., 272 (2017), 2092–2113 | DOI | MR | Zbl

[22] Geng J., Shen Z., “Homogenization of parabolic equations with non-self-similar scales”, Arch. Ration. Mech. Anal., 236:8 (2020), 145–188 | DOI | MR | Zbl

[23] Meshkova Y., “Note on quantitative homogenization results for parabolic systems in $\mathbb{R}^d$”, J. Evol. Equ., 21 (2021), 763–769 | DOI | MR | Zbl

[24] Meshkova Yu. M., Suslina T. A., “Homogenization of initial boundary value problem for parabolic systems with periodic coefficients”, Appl. Anal., 95:8 (2016), 1736–1775 | DOI | MR | Zbl

[25] Niu W., Xu Y., “Convergence rates in homogenization of higher-order parabolic systems”, Discrete Contin. Dyn. Syst., 38:8 (2018), 4203–4229 | DOI | MR | Zbl

[26] Niu W., Yuan Y., “Convergence rate in homogenization of elliptic systems with singular perturbations”, J. Math. Phys., 60 (2019), 111509 | DOI | MR | Zbl

[27] Pastukhova S. E., “Estimates in homogenization of parabolic equations with locally periodic coefficients”, Asymptot. Anal., 66:3-4 (2010), 207–228 | MR | Zbl

[28] Pastukhova S. E., “Operator estimates in homogenization of elliptic systems of equations”, J. Math. Sci. (N. Y.), 226:4 (2017), 445–461 | DOI | MR | Zbl

[29] Pastukhova S. E., “$L^2$-estimates for homogenization of elliptic operators”, J. Math. Sci. (N. Y.), 244:4 (2020), 671–685 | DOI | MR | Zbl

[30] Pastukhova S. E., “Homogenization estimates for singularly perturbed operators”, J. Math. Sci. (N. Y.), 251:5 (2020), 724–747 | DOI | MR | Zbl

[31] Pastukhova S. E., “On resolvent approximations of elliptic differential operators with locally periodic coefficients”, Lobachevskii J. Math., 41:5 (2020), 818–838 | DOI | MR | Zbl

[32] Pastukhova S. E., “On resolvent approximations of elliptic differential operators with periodic coefficients”, Appl. Anal., 101:13 (2022), 4453–4474 | DOI | MR | Zbl

[33] Pastukhova S. E., “$L^2$-estimates for homogenization of diffusion operators with unbounded nonsymmetric matrices”, J. Math. Sci. (N. Y.), 268:4 (2022), 473–492 | DOI | MR | Zbl

[34] Senik N., “Homogenization for non-self-adjoint periodic elliptic operators on an infinite cylinder”, SIAM J. Math. Anal., 49:2 (2017), 874–898 | DOI | MR | Zbl

[35] Senik N., “Homogenization for locally periodic elliptic operators”, J. Math. Anal. Appl., 505:2 (2022), 125581 | DOI | MR | Zbl

[36] Suslina T. A., “Homogenization of a periodic parabolic Cauchy problem”, Nonlinear equations and spectral theory, Am. Math. Soc., Providence, 2007, 201–233 | MR | Zbl

[37] Suslina T. A., “Homogenization of a periodic parabolic Cauchy problem in the Sobolev space”, Math. Model. Nat. Phenom., 5:4 (2010), 390–447 | DOI | MR | Zbl

[38] Zhikov V. V., Pastukhova S. E., “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR | Zbl

[39] Zhikov V. V., Pastukhova S. E., “Estimates of homogenization for a parabolic equation with periodic coefficients”, Russ. J. Math. Phys., 12:2 (2006), 224–237 | DOI | MR