$L^2$-estimates of error in homogenization of parabolic equations with correctors taken into account
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 1, pp. 134-151

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider second-order parabolic equations with bounded measurable $\varepsilon$-periodic coefficients. To solve the Cauchy problem in the layer $\mathbb{R}^d\times(0,T)$ with the nonhomogeneous equation, we obtain approximations in the norm $\|\cdot\|_{L^2(\mathbb{R}^d\times(0,T))}$ with remainder of order $\varepsilon^2$ as $\varepsilon\to 0.$
Mots-clés : parabolic equations
Keywords: homogenization of solutions, homogenization error, corrector.
@article{CMFD_2023_69_1_a8,
     author = {S. E. Pastukhova},
     title = {$L^2$-estimates of error in homogenization of parabolic equations with correctors taken into account},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {134--151},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a8/}
}
TY  - JOUR
AU  - S. E. Pastukhova
TI  - $L^2$-estimates of error in homogenization of parabolic equations with correctors taken into account
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 134
EP  - 151
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a8/
LA  - ru
ID  - CMFD_2023_69_1_a8
ER  - 
%0 Journal Article
%A S. E. Pastukhova
%T $L^2$-estimates of error in homogenization of parabolic equations with correctors taken into account
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 134-151
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a8/
%G ru
%F CMFD_2023_69_1_a8
S. E. Pastukhova. $L^2$-estimates of error in homogenization of parabolic equations with correctors taken into account. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 1, pp. 134-151. http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a8/